A platform for research: civil engineering, architecture and urbanism
Carbon textile reinforced concrete: materials and structural analysis
Abstract Textile reinforced concrete (TRC) is a composite made of a cementitious matrix and non-corrosive fabrics with excellent mechanical behavior and elevated load-bearing capacity. Therefore, TRC is highly recommended for structural applications. Due to the reinforcement’s non-corrosive property, this material is interesting in replacing the reinforced concrete (RC). This work presents a study on the characterization of carbon TRCs under tensile and bending loadings. Direct tensile tests were performed and the effect of the polymeric coating used on the fabric manufacturing, the number of layers and an epoxy resin and sand coating was analyzed. The results showed that the composites mechanical behavior depends mainly on the reinforcement-matrix bond. In order to evaluate the fabric-matrix interface, pull-out tests were carried on. The TRC potential as a structural application is also addressed. Thus, structural beams reinforced with carbon TRC with and without dispersed steel fibers on the matrix were submitted to bending. Compared with RC, the TRC beams presented less ductile behavior. Nevertheless, the current standards for the concrete structures design establish a maximum element displacement of span/250. At this level, the load–displacement curves of TRC and RC beams were coincident, and the applied load was considerably distant from the failure load.
Carbon textile reinforced concrete: materials and structural analysis
Abstract Textile reinforced concrete (TRC) is a composite made of a cementitious matrix and non-corrosive fabrics with excellent mechanical behavior and elevated load-bearing capacity. Therefore, TRC is highly recommended for structural applications. Due to the reinforcement’s non-corrosive property, this material is interesting in replacing the reinforced concrete (RC). This work presents a study on the characterization of carbon TRCs under tensile and bending loadings. Direct tensile tests were performed and the effect of the polymeric coating used on the fabric manufacturing, the number of layers and an epoxy resin and sand coating was analyzed. The results showed that the composites mechanical behavior depends mainly on the reinforcement-matrix bond. In order to evaluate the fabric-matrix interface, pull-out tests were carried on. The TRC potential as a structural application is also addressed. Thus, structural beams reinforced with carbon TRC with and without dispersed steel fibers on the matrix were submitted to bending. Compared with RC, the TRC beams presented less ductile behavior. Nevertheless, the current standards for the concrete structures design establish a maximum element displacement of span/250. At this level, the load–displacement curves of TRC and RC beams were coincident, and the applied load was considerably distant from the failure load.
Carbon textile reinforced concrete: materials and structural analysis
Mansur de Castro Silva, Rebecca (author) / de Andrade Silva, Flávio (author)
2020
Article (Journal)
Electronic Resource
English
Carbon textile reinforced concrete: materials and structural analysis
Springer Verlag | 2020
|Pultruded Textile Reinforced Concrete Structural Shapes
Springer Verlag | 2017
|Structural behaviour of textile reinforced concrete
British Library Conference Proceedings | 2006
|Glassfiber reinforced concrete/textile-reinforced concrete
British Library Online Contents | 2004
|TIBKAT | 2017
|