A platform for research: civil engineering, architecture and urbanism
A Critical Review of Surrogate Assisted Robust Design Optimization
Abstract Robust design optimization (RDO) has been eminent, ascertaining optimal configuration of engineering systems in presence of uncertainties. However, computational aspect of conventional RDO can often get computationally intensive as neighborhood assessments of every solution are required to compute the performance variance and ensure feasibility. Surrogate assisted optimization is one of the efficient approaches in order to mitigate this issue of computational expense. However, the performance of a surrogate model plays a key factor in determining the optima in multi-modal and highly non-linear landscapes, in presence of uncertainties. In other words, the approximation accuracy of the model is principal in yielding the actual optima and thus, avoiding any misguide to the decision maker on the basis of false or, local optimum points. Therefore, an extensive survey has been carried out by employing most of the well-known surrogate models in the framework of RDO. It is worth mentioning that the numerical study has revealed consistent performance of a model out of all the surrogates utilized. Finally, the best performing model has been utilized in solving a large-scale practical RDO problem. All the results have been compared with that of Monte Carlo simulation results.
A Critical Review of Surrogate Assisted Robust Design Optimization
Abstract Robust design optimization (RDO) has been eminent, ascertaining optimal configuration of engineering systems in presence of uncertainties. However, computational aspect of conventional RDO can often get computationally intensive as neighborhood assessments of every solution are required to compute the performance variance and ensure feasibility. Surrogate assisted optimization is one of the efficient approaches in order to mitigate this issue of computational expense. However, the performance of a surrogate model plays a key factor in determining the optima in multi-modal and highly non-linear landscapes, in presence of uncertainties. In other words, the approximation accuracy of the model is principal in yielding the actual optima and thus, avoiding any misguide to the decision maker on the basis of false or, local optimum points. Therefore, an extensive survey has been carried out by employing most of the well-known surrogate models in the framework of RDO. It is worth mentioning that the numerical study has revealed consistent performance of a model out of all the surrogates utilized. Finally, the best performing model has been utilized in solving a large-scale practical RDO problem. All the results have been compared with that of Monte Carlo simulation results.
A Critical Review of Surrogate Assisted Robust Design Optimization
Chatterjee, Tanmoy (author) / Chakraborty, Souvik (author) / Chowdhury, Rajib (author)
2017
Article (Journal)
Electronic Resource
English
A Critical Review of Surrogate Assisted Robust Design Optimization
Springer Verlag | 2019
|Engineering design applications of surrogate-assisted optimization techniques
Online Contents | 2012
|Engineering design applications of surrogate-assisted optimization techniques
Springer Verlag | 2012
|Locally weighted regression models for surrogate-assisted design optimization
Online Contents | 2017
|