A platform for research: civil engineering, architecture and urbanism
Characteristics of Water Ingress in Norwegian Subsea Tunnels
Abstract Water ingress represents one of the main challenges in subsea tunnelling, particularly when this occurs in sections with poor rock mass quality. This paper is discussing the main characteristics of water ingress in subsea hard rock tunnels based on the experience from almost 50 such tunnels that have been built in Norway. Following a brief description of the geological conditions and the basic design of the subsea tunnels, pre-construction investigations and investigations during excavation are discussed with particular emphasis on prediction of water ingress. Two cases with particularly difficult conditions; the Bjorøy tunnel and the Atlantic Ocean tunnel, are discussed in detail. In these cases, large water inflow with pressure of up to 2.4 MPa was encountered at major faults/weakness zones during excavation, and special procedures were required to cope with the problems. Based on the experience from the Norwegian projects, it is concluded that continuous follow-up by experienced engineering geologists, probe drilling with the drilling jumbo and pre-grouting where required are the most important factors for coping with water ingress and ensuring stability.
Characteristics of Water Ingress in Norwegian Subsea Tunnels
Abstract Water ingress represents one of the main challenges in subsea tunnelling, particularly when this occurs in sections with poor rock mass quality. This paper is discussing the main characteristics of water ingress in subsea hard rock tunnels based on the experience from almost 50 such tunnels that have been built in Norway. Following a brief description of the geological conditions and the basic design of the subsea tunnels, pre-construction investigations and investigations during excavation are discussed with particular emphasis on prediction of water ingress. Two cases with particularly difficult conditions; the Bjorøy tunnel and the Atlantic Ocean tunnel, are discussed in detail. In these cases, large water inflow with pressure of up to 2.4 MPa was encountered at major faults/weakness zones during excavation, and special procedures were required to cope with the problems. Based on the experience from the Norwegian projects, it is concluded that continuous follow-up by experienced engineering geologists, probe drilling with the drilling jumbo and pre-grouting where required are the most important factors for coping with water ingress and ensuring stability.
Characteristics of Water Ingress in Norwegian Subsea Tunnels
Nilsen, Bjørn (author)
2012
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Characteristics of Water Ingress in Norwegian Subsea Tunnels
British Library Online Contents | 2014
|Characteristics of Water Ingress in Norwegian Subsea Tunnels
Online Contents | 2012
|Characteristics of Water Ingress in Norwegian Subsea Tunnels
Tema Archive | 2014
|British Library Conference Proceedings | 1993
|Foiling water ingress in Swiss road tunnels
Tema Archive | 1987
|