A platform for research: civil engineering, architecture and urbanism
First Infilling of the Venda Nova II Unlined High-Pressure Tunnel: Observed Behaviour and Numerical Modelling
Abstract The underground structures of the Venda Nova II reversible hydroelectric power scheme present features that make it an interesting case study. Worthy of mention are the inclination and length of the unlined pressure tunnel, the high water head and the great depth of the powerhouse cavern. In projects of this type, the main effect of the internal water pressure in the pressure tunnel is the establishment of seepage from the tunnel into the rock mass, which can reach the adits and the powerhouse cavern. This seepage is influenced by several factors, such as the geometry of the underground openings, the rock mass properties—namely, the joints characteristics—and the stress state resulting from the excavation and from the internal water pressure. This article presents the main features of the underground structures of the Venda Nova II scheme and a detailed description of the observed behaviour during the first infilling of the pressure tunnel. A three-dimensional multi-laminated numerical model of the rock mass hydromechanical behaviour was developed to help understand the observed behaviour. The model assumptions in regard to the geometry of the openings, the jointing pattern, the rock mass hydraulic and mechanical behaviour, as well as the hydromechanical interaction, are described. Results obtained with the numerical model are presented and compared with the observed behaviour. Finally, the validity and importance of the numerical tools for the interpretation of the rock mass hydromechanical behaviour is discussed.
First Infilling of the Venda Nova II Unlined High-Pressure Tunnel: Observed Behaviour and Numerical Modelling
Abstract The underground structures of the Venda Nova II reversible hydroelectric power scheme present features that make it an interesting case study. Worthy of mention are the inclination and length of the unlined pressure tunnel, the high water head and the great depth of the powerhouse cavern. In projects of this type, the main effect of the internal water pressure in the pressure tunnel is the establishment of seepage from the tunnel into the rock mass, which can reach the adits and the powerhouse cavern. This seepage is influenced by several factors, such as the geometry of the underground openings, the rock mass properties—namely, the joints characteristics—and the stress state resulting from the excavation and from the internal water pressure. This article presents the main features of the underground structures of the Venda Nova II scheme and a detailed description of the observed behaviour during the first infilling of the pressure tunnel. A three-dimensional multi-laminated numerical model of the rock mass hydromechanical behaviour was developed to help understand the observed behaviour. The model assumptions in regard to the geometry of the openings, the jointing pattern, the rock mass hydraulic and mechanical behaviour, as well as the hydromechanical interaction, are described. Results obtained with the numerical model are presented and compared with the observed behaviour. Finally, the validity and importance of the numerical tools for the interpretation of the rock mass hydromechanical behaviour is discussed.
First Infilling of the Venda Nova II Unlined High-Pressure Tunnel: Observed Behaviour and Numerical Modelling
Lamas, Luís N. (author) / Leitão, Noemí S. (author) / Esteves, Carlos (author) / Plasencia, Nadir (author)
2013
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
British Library Online Contents | 2014
|Numerical analysis of the Venda Nova II powerhouse complex
British Library Conference Proceedings | 2007
|