A platform for research: civil engineering, architecture and urbanism
Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation
Abstract Hydraulic fracture breakdown and reorientation data collected from two instrumented test borehole sites have been analyzed to assess the effect of the initiation type (axial or transverse) on the treating pressure. Vertical boreholes were drilled and fractures were placed in a conglomerate at depths of 140–180 m in a far-field stress field that favored horizontal fracture growth. Axial initiation resulted in high injection pressure, which was attributed to near-borehole tortuosity generated as the hydraulic fracture reoriented to align with the far-field stresses. Acoustic scanner logging of the boreholes after fracturing demonstrated that, in many cases, axial initiation occurred and when this was the case, treating pressures were high and consistent with near-borehole tortuous fracture paths. A fracture initiation analysis determined that initiation at abrasively cut circumferential slots should occur before axial initiation. Slots were cut to locate the initiation sites and to make transverse fracture initiation more likely. Transverse initiation from the vertical boreholes at pre-cut slots lowered the injection pressures during the fracture treatment by up to 12 MPa for water injected at approximately 500 L per minute.
Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation
Abstract Hydraulic fracture breakdown and reorientation data collected from two instrumented test borehole sites have been analyzed to assess the effect of the initiation type (axial or transverse) on the treating pressure. Vertical boreholes were drilled and fractures were placed in a conglomerate at depths of 140–180 m in a far-field stress field that favored horizontal fracture growth. Axial initiation resulted in high injection pressure, which was attributed to near-borehole tortuosity generated as the hydraulic fracture reoriented to align with the far-field stresses. Acoustic scanner logging of the boreholes after fracturing demonstrated that, in many cases, axial initiation occurred and when this was the case, treating pressures were high and consistent with near-borehole tortuous fracture paths. A fracture initiation analysis determined that initiation at abrasively cut circumferential slots should occur before axial initiation. Slots were cut to locate the initiation sites and to make transverse fracture initiation more likely. Transverse initiation from the vertical boreholes at pre-cut slots lowered the injection pressures during the fracture treatment by up to 12 MPa for water injected at approximately 500 L per minute.
Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation
Jeffrey, R. G. (author) / Chen, Z. R. (author) / Zhang, X. (author) / Bunger, A. P. (author) / Mills, K. W. (author)
2015
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation
British Library Online Contents | 2015
|Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation
Online Contents | 2015
|Numerical modeling of hydraulic fracture propagation and reorientation
Taylor & Francis Verlag | 2015
|A new mechanism for hydraulic fracture initiation
British Library Conference Proceedings | 1996
|