A platform for research: civil engineering, architecture and urbanism
Fate Modelling of DEHP in Roskilde Fjord, Denmark
Abstract The fate of di(2-ethylhexyl)phthalate (DEHP) is modeled in Roskilde fjord, Denmark. The fjord is situated near Roskilde, which comprises 80,000 PE, various industries, a central wastewater treatment plant, and adjacent agricultural fields. Roskilde fjord is thus a suitable recipient for studying the transport and fate of DEHP, which is used in a variety of different industries and consumer products. Wastewater from households and industries is led to the local wastewater treatment plant, which leads the effluent to the fjord. The sludge is partly stored and partly amended on an adjacent field. The model applied in the present study is a simple box model coupling water and sediment compartments of the fjord with wastewater treatment plant effluent, streams leading to the fjord, and atmospheric deposition. The fjord model comprises first-order degradation, adsorption, sedimentation, vertical diffusion in the sediment, dispersive mixing in the water, and water exchange with the surrounding sea. Experimental measurements of DEHP were made in the fjord water and sediment, in the wastewater treatment plant inlet and effluent, and in streams and atmospheric deposition. The experimental data are used to calibrate the model. The model results show that freshwater from streams is the predominant DEHP source to the fjord, followed by atmospheric deposition and effluents from wastewater treatment plants. Sedimentation is the predominant removal mechanism followed by water exchange with the sea and degradation.
Fate Modelling of DEHP in Roskilde Fjord, Denmark
Abstract The fate of di(2-ethylhexyl)phthalate (DEHP) is modeled in Roskilde fjord, Denmark. The fjord is situated near Roskilde, which comprises 80,000 PE, various industries, a central wastewater treatment plant, and adjacent agricultural fields. Roskilde fjord is thus a suitable recipient for studying the transport and fate of DEHP, which is used in a variety of different industries and consumer products. Wastewater from households and industries is led to the local wastewater treatment plant, which leads the effluent to the fjord. The sludge is partly stored and partly amended on an adjacent field. The model applied in the present study is a simple box model coupling water and sediment compartments of the fjord with wastewater treatment plant effluent, streams leading to the fjord, and atmospheric deposition. The fjord model comprises first-order degradation, adsorption, sedimentation, vertical diffusion in the sediment, dispersive mixing in the water, and water exchange with the surrounding sea. Experimental measurements of DEHP were made in the fjord water and sediment, in the wastewater treatment plant inlet and effluent, and in streams and atmospheric deposition. The experimental data are used to calibrate the model. The model results show that freshwater from streams is the predominant DEHP source to the fjord, followed by atmospheric deposition and effluents from wastewater treatment plants. Sedimentation is the predominant removal mechanism followed by water exchange with the sea and degradation.
Fate Modelling of DEHP in Roskilde Fjord, Denmark
Fauser, Patrik (author) / Vikelsøe, Jørgen (author) / Sørensen, Peter B. (author) / Carlsen, Lars (author)
2008
Article (Journal)
Electronic Resource
English
BKL:
43.00
Umweltforschung, Umweltschutz: Allgemeines
/
43.00$jUmweltforschung$jUmweltschutz: Allgemeines
Fate Modelling of DEHP in Roskilde Fjord, Denmark
Springer Verlag | 2008
|Online Contents | 2001
Railway bridge over Roskilde Fjord at Frederikssund
Engineering Index Backfile | 1929
|British Library Online Contents | 2006