A platform for research: civil engineering, architecture and urbanism
A Simulation Framework for Assessing Physical and Wildlife Impacts of Oil and Gas Development Scenarios in Southwestern Wyoming
Abstract Foreseeable natural gas development in southwestern Wyoming has the potential to increase sagebrush fragmentation and risks to resident wildlife species. The ability to balance future development with conservation goals, however, is enhanced by advances in directional-drilling technologies that use multiple wells per pad and produce less surface disturbance than conventional drilling methods. To evaluate the conservation potential of this technology, I developed an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number of wells per pad and use simulation results to quantify physical and wildlife-habitat impacts. I applied the model to assess tradeoffs among 10 conventional and directional-drilling scenarios in a natural gas field in southwestern Wyoming. Scenarios spanned a gradient in the number of vertical and directional wells, and in number of pads (2000 to 250), but all extracted the same amount of gas over a 15-year period. Reducing pad numbers with directional-drilling technology reduced surface disturbance area and impacts on spatially extensive habitats (48–96% of study area) such as sagebrush-obligate songbird habitat, elk winter range, and sagebrush core area. Impacts declined for spatially restricted mule deer migration corridors (24% of study area) and greater sage-grouse leks until energy infrastructure densities within corridors and near leks were similar to the initial landscape. Scenario simulations and tradeoff assessments such as illustrated in this study are intended to help decision-makers identify development designs that best achieve both energy and conservation goals.
A Simulation Framework for Assessing Physical and Wildlife Impacts of Oil and Gas Development Scenarios in Southwestern Wyoming
Abstract Foreseeable natural gas development in southwestern Wyoming has the potential to increase sagebrush fragmentation and risks to resident wildlife species. The ability to balance future development with conservation goals, however, is enhanced by advances in directional-drilling technologies that use multiple wells per pad and produce less surface disturbance than conventional drilling methods. To evaluate the conservation potential of this technology, I developed an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number of wells per pad and use simulation results to quantify physical and wildlife-habitat impacts. I applied the model to assess tradeoffs among 10 conventional and directional-drilling scenarios in a natural gas field in southwestern Wyoming. Scenarios spanned a gradient in the number of vertical and directional wells, and in number of pads (2000 to 250), but all extracted the same amount of gas over a 15-year period. Reducing pad numbers with directional-drilling technology reduced surface disturbance area and impacts on spatially extensive habitats (48–96% of study area) such as sagebrush-obligate songbird habitat, elk winter range, and sagebrush core area. Impacts declined for spatially restricted mule deer migration corridors (24% of study area) and greater sage-grouse leks until energy infrastructure densities within corridors and near leks were similar to the initial landscape. Scenario simulations and tradeoff assessments such as illustrated in this study are intended to help decision-makers identify development designs that best achieve both energy and conservation goals.
A Simulation Framework for Assessing Physical and Wildlife Impacts of Oil and Gas Development Scenarios in Southwestern Wyoming
Garman, Steven L. (author)
2017
Article (Journal)
Electronic Resource
English
BKL:
43.00
Umweltforschung, Umweltschutz: Allgemeines
/
43.00$jUmweltforschung$jUmweltschutz: Allgemeines
Springer Verlag | 2017
|Reducing the impacts of development on wildlife
Taylor & Francis Verlag | 2014
|Highway Construction Impacts on Wyoming Businesses
British Library Online Contents | 2005
|Description of a large catastrophic failure in a southwestern Wyoming Trona Mine
British Library Conference Proceedings | 1999
|