A platform for research: civil engineering, architecture and urbanism
Dissipation Testing of Singapore Marine Clay by Piezocone Tests
Abstract In situ dissipation tests provide a means of evaluating the in situ coefficient of consolidation due to horizontal flow and hydraulic conductivity in horizontal direction in marine clays formation. Dissipation tests by means of piezocone were utilised in the characterisation of the coefficient of consolidation due to horizontal flow and the hydraulic conductivity in horizontal direction of Singapore marine clay at Changi. Piezocone dissipation tests were carried out prior to reclamation as well as after ground improvement with vertical drains to compare the changes in the coefficient of consolidation due to horizontal flow and hydraulic conductivity in horizontal direction prior to and after ground improvement. The quasi-static piezometric pressures from the dissipation tests were compared with piezometric pressures from piezometers to determine their possibility of future use as an alternative to piezometers. Post-improvement CPTU dissipation tests were carried out in the treated “Vertical Drain Area” as well as in an adjacent untreated “Control Area” for comparison purposes. This study provides support for the use of piezocone dissipation testing methods for the determination of the coefficient of consolidation due to horizontal flow and hydraulic conductivity in horizontal direction of marine clays in the region as well as an alternative to piezometer instrumentation for monitoring of piezometric pressure during consolidation.
Dissipation Testing of Singapore Marine Clay by Piezocone Tests
Abstract In situ dissipation tests provide a means of evaluating the in situ coefficient of consolidation due to horizontal flow and hydraulic conductivity in horizontal direction in marine clays formation. Dissipation tests by means of piezocone were utilised in the characterisation of the coefficient of consolidation due to horizontal flow and the hydraulic conductivity in horizontal direction of Singapore marine clay at Changi. Piezocone dissipation tests were carried out prior to reclamation as well as after ground improvement with vertical drains to compare the changes in the coefficient of consolidation due to horizontal flow and hydraulic conductivity in horizontal direction prior to and after ground improvement. The quasi-static piezometric pressures from the dissipation tests were compared with piezometric pressures from piezometers to determine their possibility of future use as an alternative to piezometers. Post-improvement CPTU dissipation tests were carried out in the treated “Vertical Drain Area” as well as in an adjacent untreated “Control Area” for comparison purposes. This study provides support for the use of piezocone dissipation testing methods for the determination of the coefficient of consolidation due to horizontal flow and hydraulic conductivity in horizontal direction of marine clays in the region as well as an alternative to piezometer instrumentation for monitoring of piezometric pressure during consolidation.
Dissipation Testing of Singapore Marine Clay by Piezocone Tests
Arulrajah, A. (author) / Bo, M. W. (author) / Nikraz, H. (author) / Balasubramaniam, A. S. (author)
2007
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Dissipation Testing of Singapore Marine Clay by Piezocone Tests
Online Contents | 2007
|Dissipation Testing of Singapore Marine Clay by Piezocone Tests
British Library Online Contents | 2007
|Piezocone Dissipation Testing of Singapore Marine Clay at Changi
Online Contents | 2004
|Seepage analysis from piezocone dissipation tests
British Library Conference Proceedings | 1995
|Prediction of embankment settlements over marine clay using piezocone penetration tests
Online Contents | 2010
|