A platform for research: civil engineering, architecture and urbanism
Dynamic Analysis of Subway Structures Under Blast Loading
Abstract Public transit systems have become one of the targets of terrorist attacks using explosives, examples of which are the 1995 attack on Paris subway and the 2004 attack on Moscow subway. Considering the intense threats of terrorist attacks on subway systems in metropolitan areas, explicit three-dimensional Finite Element method was used to investigate the dynamic response and damage of subway structures under internal blast loading. The study was motivated by the fact that explosion in subway structure may not only cause direct life loss, but also damage the subway structure and lead to further loss of lives and properties. The study based on the New York subway system, and investigated the influences of various factors on the possible damage of subway tunnel, including weight of explosive, ground media, burial depth and characteristics of blast pressure. A mitigation measure using grouting to improve ground stiffness and strength was also analyzed. Considering the amount of explosive terrorists may use, the present study focused on small-diameter single-track tunnels, which are more vulnerable to internal blast loading and are common in New York City. Blast pressure from explosion was applied to lining surface assuming triangle pressure–time diagram, and the elasto-plasticity of ground and lining as well as their nonlinear interaction was taken into account in the numerical model. It is found from the numerical study that maximum lining stress occurred right after explosion, before the blast air pressure reduced to the atmospheric one, and it was more dependent on the maximum magnitude of air pressure than on the specific impulse, which is the area below the pressure–time curve. Small tunnels embedded in soft soil, with small burial depth, might be permanently damaged even by modest internal explosion that may be perpetuated by terrorists.
Dynamic Analysis of Subway Structures Under Blast Loading
Abstract Public transit systems have become one of the targets of terrorist attacks using explosives, examples of which are the 1995 attack on Paris subway and the 2004 attack on Moscow subway. Considering the intense threats of terrorist attacks on subway systems in metropolitan areas, explicit three-dimensional Finite Element method was used to investigate the dynamic response and damage of subway structures under internal blast loading. The study was motivated by the fact that explosion in subway structure may not only cause direct life loss, but also damage the subway structure and lead to further loss of lives and properties. The study based on the New York subway system, and investigated the influences of various factors on the possible damage of subway tunnel, including weight of explosive, ground media, burial depth and characteristics of blast pressure. A mitigation measure using grouting to improve ground stiffness and strength was also analyzed. Considering the amount of explosive terrorists may use, the present study focused on small-diameter single-track tunnels, which are more vulnerable to internal blast loading and are common in New York City. Blast pressure from explosion was applied to lining surface assuming triangle pressure–time diagram, and the elasto-plasticity of ground and lining as well as their nonlinear interaction was taken into account in the numerical model. It is found from the numerical study that maximum lining stress occurred right after explosion, before the blast air pressure reduced to the atmospheric one, and it was more dependent on the maximum magnitude of air pressure than on the specific impulse, which is the area below the pressure–time curve. Small tunnels embedded in soft soil, with small burial depth, might be permanently damaged even by modest internal explosion that may be perpetuated by terrorists.
Dynamic Analysis of Subway Structures Under Blast Loading
Liu, Huabei (author)
2009
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Dynamic Analysis of Subway Structures Under Blast Loading
British Library Online Contents | 2009
|Dynamic Analysis of Subway Structures Under Blast Loading
Springer Verlag | 2009
|The Failure Model of the Subway Station under Blast Loading
British Library Conference Proceedings | 2012
|The Failure Model of the Subway Station under Blast Loading
Tema Archive | 2012
|Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading
British Library Online Contents | 2016
|