A platform for research: civil engineering, architecture and urbanism
Direct Shear Tests on Waste Tires–Sand Mixtures
Abstract Waste tires are used in some engineering applications and thereby reduce the potential impact on the environment, for example, as lightweight materials in geotechnical engineering projects. This paper presents a brief literature review on geotechnical applications of processed waste tires, and a laboratory study on the effect of tire shreds on the physical properties of two different sands (fine angular sand and coarse rotund sand). Each type of sand was mixed four different percentages of rubber particles; 5, 10, 20 and 50% by dry weight. Direct shear tests were employed to investigate the effect of rubber particles on the shear strength of sands and internal friction angle. The addition of shredded waste rubber particles slightly decreased both the internal angle of friction and the shear strengths of the sands within the tested stress and strain levels. Additionally, a prediction model using stepwise regression (SR) method is proposed to calculate the shear strength of sands with the increasing rubber content. The performance of accuracies of proposed SR models are quite satisfactory. The proposed SR models are presented as relatively simple explicit mathematical functions for further use by researchers.
Direct Shear Tests on Waste Tires–Sand Mixtures
Abstract Waste tires are used in some engineering applications and thereby reduce the potential impact on the environment, for example, as lightweight materials in geotechnical engineering projects. This paper presents a brief literature review on geotechnical applications of processed waste tires, and a laboratory study on the effect of tire shreds on the physical properties of two different sands (fine angular sand and coarse rotund sand). Each type of sand was mixed four different percentages of rubber particles; 5, 10, 20 and 50% by dry weight. Direct shear tests were employed to investigate the effect of rubber particles on the shear strength of sands and internal friction angle. The addition of shredded waste rubber particles slightly decreased both the internal angle of friction and the shear strengths of the sands within the tested stress and strain levels. Additionally, a prediction model using stepwise regression (SR) method is proposed to calculate the shear strength of sands with the increasing rubber content. The performance of accuracies of proposed SR models are quite satisfactory. The proposed SR models are presented as relatively simple explicit mathematical functions for further use by researchers.
Direct Shear Tests on Waste Tires–Sand Mixtures
Cabalar, Ali Firat (author)
2010
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Direct Shear Tests on Waste Tires–Sand Mixtures
British Library Online Contents | 2011
|Direct Shear Tests on Waste Tires–Sand Mixtures
Online Contents | 2010
|Sand Reinforced with Shredded Waste Tires
Online Contents | 1996
|