A platform for research: civil engineering, architecture and urbanism
Some Effects of Shearing Velocity on the Shear Stress-Deformation Behaviour of Hard–Soft Artificial Material Interfaces
Abstract Shear behaviour of the joints formed by the interface of two different material types, such as rock and cemented paste backfill, rock and concrete or two different rock types, have practical importance in many rock engineering activities. This paper presents the results of an experimental investigation into the shear behaviour of these special joints under pseudo-static shear velocity. Direct shear tests on concrete–plaster interfaces were carried out under boundary conditions of constant normal load and constant normal stiffness. Shearing velocities of the performed tests were in the range of 0.3–30 mm/min. The results of the shear tests conducted on the planar and rough artificial prepared joints showed that the shearing velocity has a significant influence on the shear strength, friction angle and shear stiffness of the hard–soft material interface. So that, these parameters were decreased when shear velocity was increased. Also, comparison of the tests results that performed on the concrete–plaster joints with those from tests on the plaster–plaster and concrete–concrete interfaces showed that the shear behaviour of concrete–plaster interface is governed mainly by the shear parameters of the plaster block (namely softer material).
Some Effects of Shearing Velocity on the Shear Stress-Deformation Behaviour of Hard–Soft Artificial Material Interfaces
Abstract Shear behaviour of the joints formed by the interface of two different material types, such as rock and cemented paste backfill, rock and concrete or two different rock types, have practical importance in many rock engineering activities. This paper presents the results of an experimental investigation into the shear behaviour of these special joints under pseudo-static shear velocity. Direct shear tests on concrete–plaster interfaces were carried out under boundary conditions of constant normal load and constant normal stiffness. Shearing velocities of the performed tests were in the range of 0.3–30 mm/min. The results of the shear tests conducted on the planar and rough artificial prepared joints showed that the shearing velocity has a significant influence on the shear strength, friction angle and shear stiffness of the hard–soft material interface. So that, these parameters were decreased when shear velocity was increased. Also, comparison of the tests results that performed on the concrete–plaster joints with those from tests on the plaster–plaster and concrete–concrete interfaces showed that the shear behaviour of concrete–plaster interface is governed mainly by the shear parameters of the plaster block (namely softer material).
Some Effects of Shearing Velocity on the Shear Stress-Deformation Behaviour of Hard–Soft Artificial Material Interfaces
Atapour, H. (author) / Moosavi, M. (author)
2013
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
British Library Online Contents | 2013
|The Influence of Shearing Velocity on Shear Behavior of Artificial Joints
British Library Online Contents | 2014
|The Influence of Shearing Velocity on Shear Behavior of Artificial Joints
Online Contents | 2013
|The Influence of Shearing Velocity on Shear Behavior of Artificial Joints
Online Contents | 2013
|