A platform for research: civil engineering, architecture and urbanism
Bearing Capacity of Eccentrically–Obliquely Loaded Footings Resting on Fiber-Reinforced Sand
Abstract This paper presents the method proposed to calculate the bearing capacity of a square footing under oblique and eccentric oblique loading condition (satisfying both shear failure and settlement criteria) resting on fiber reinforced sand layer underlain by sand with geosynthetic/fabric sheet at the interface. Large direct shear tests were carried out to investigate the shear strength parameters of sand and randomly distributed fiber reinforced sand (RDFS) and soil-plastic fabric sheet bond. The ultimate bearing capacity of RDFS was determined using direct shear results. Non-dimensional charts proposed by Kumar (Behaviour of eccentrically–obliquely loaded footing on reinforced earth slab. Ph.D. thesis, University of Roorkee, Roorkee, India, 2002) were used to consider the contribution of plastic fabric sheet in increasing the bearing capacity. Also, for calculating the settlement, horizontal deformation and tilt at a given pressure the regression analysis of plate load test data have been carried out. The predicted values of ultimate bearing capacity, settlement, horizontal deformation and tilt are compared with the experimental values which are in good agreement with each other. There appeared to be an increase in the residual shear strength and angle of internal friction of RDFS.
Bearing Capacity of Eccentrically–Obliquely Loaded Footings Resting on Fiber-Reinforced Sand
Abstract This paper presents the method proposed to calculate the bearing capacity of a square footing under oblique and eccentric oblique loading condition (satisfying both shear failure and settlement criteria) resting on fiber reinforced sand layer underlain by sand with geosynthetic/fabric sheet at the interface. Large direct shear tests were carried out to investigate the shear strength parameters of sand and randomly distributed fiber reinforced sand (RDFS) and soil-plastic fabric sheet bond. The ultimate bearing capacity of RDFS was determined using direct shear results. Non-dimensional charts proposed by Kumar (Behaviour of eccentrically–obliquely loaded footing on reinforced earth slab. Ph.D. thesis, University of Roorkee, Roorkee, India, 2002) were used to consider the contribution of plastic fabric sheet in increasing the bearing capacity. Also, for calculating the settlement, horizontal deformation and tilt at a given pressure the regression analysis of plate load test data have been carried out. The predicted values of ultimate bearing capacity, settlement, horizontal deformation and tilt are compared with the experimental values which are in good agreement with each other. There appeared to be an increase in the residual shear strength and angle of internal friction of RDFS.
Bearing Capacity of Eccentrically–Obliquely Loaded Footings Resting on Fiber-Reinforced Sand
Kaur, Arshdeep (author) / Kumar, Arvind (author)
2013
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Bearing Capacity of Eccentrically–Obliquely Loaded Footings Resting on Fiber-Reinforced Sand
British Library Online Contents | 2014
|Bearing Capacity of Eccentrically–Obliquely Loaded Footings Resting on Fiber-Reinforced Sand
Online Contents | 2013
|Bearing capacity of eccentrically loaded strip footings close to geotextile-reinforced sand slope
Online Contents | 2014
|Bearing capacity of eccentrically loaded strip footings close to geotextile-reinforced sand slope
British Library Online Contents | 2014
|