A platform for research: civil engineering, architecture and urbanism
Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay
Abstract Copper slag is a by-product obtained from production of copper metal. As copper slag contains silica and alumina, it may exhibit pozzolanic property, and hence it may be re-use in ground improvement applications as a partial replacement of cement. Present study evaluates systematically the possible pozzolanic property of copper slag as well as studies the effect of copper slag on engineering properties of cement-treated clay. X-rays diffraction method was employed to assess the possible pozzolanic property of copper slag. Effect of copper slag on engineering properties (i.e. compressive strength and compressibility) of cement-treated clay was studied with samples prepared with constant water content and workability. The test results showed that with sufficient curing time and at constant workability, the compressive strength of cement-treated clay was found to be increased with increasing amount of copper slag at high cement content but the compressive strength remained the same with increasing amount of copper slag at low cement content. Compressibility of cement-treated clay was found to be unchanged with increasing amount of copper slag. It was concluded that copper slag can be used as partial replacement of cement in treating soft marine clay.
Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay
Abstract Copper slag is a by-product obtained from production of copper metal. As copper slag contains silica and alumina, it may exhibit pozzolanic property, and hence it may be re-use in ground improvement applications as a partial replacement of cement. Present study evaluates systematically the possible pozzolanic property of copper slag as well as studies the effect of copper slag on engineering properties of cement-treated clay. X-rays diffraction method was employed to assess the possible pozzolanic property of copper slag. Effect of copper slag on engineering properties (i.e. compressive strength and compressibility) of cement-treated clay was studied with samples prepared with constant water content and workability. The test results showed that with sufficient curing time and at constant workability, the compressive strength of cement-treated clay was found to be increased with increasing amount of copper slag at high cement content but the compressive strength remained the same with increasing amount of copper slag at low cement content. Compressibility of cement-treated clay was found to be unchanged with increasing amount of copper slag. It was concluded that copper slag can be used as partial replacement of cement in treating soft marine clay.
Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay
Bharati, Sanjay Kumar (author) / Chew, Soon Hoe (author)
2016
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay
British Library Online Contents | 2016
|Geotechnical Behavior of Recycled Copper Slag-Cement-Treated Singapore Marine Clay
Online Contents | 2016
|Use of Recycled Copper Slag in Cement-Treated Singapore Marine Clay
Springer Verlag | 2010
|Behavior of Soft Singapore Marine Clay Treated with Cement
British Library Conference Proceedings | 2001
|Microstructure of cement-treated Singapore marine clay
British Library Online Contents | 2006
|