A platform for research: civil engineering, architecture and urbanism
Laboratory investigation of the mechanical properties of coal-rock combined body
Abstract Understanding the behavior of the top-coal caving mining face and immediate roof can be used to enhance buffering effects. The mechanical properties of the coal-rock combined body (CRCB) play a vital role in the performance of overburden load transmittance and support resistance design. We define and derive the relative physical and mechanical parameters of CRCB to illustrate and analyze the influence of coal-rock height ratio (CRHR), coal and rock mass behavior, and interface parameters on CRCB mechanical properties. We conducted uniaxial compression tests to obtain uniaxial compressive strength (UCS), elastic modulus (EM), and the full range of stress–strain curves. Our results show that UCS is positively correlated with EM. However, CRCB EM and UCS decrease with increasing CRHR or effective coal-rock height ratio (ECRHR) and the slope of the curves gradually decreases. CRCB mechanical parameters increase linearly with EM of the coal or rock mass. Although increased coal-rock interface angles (IA) lead to increased CRCB mechanical parameters, the incremental value can be ignored. Sensitive analysis shows that the rank of influential factors on CRCB properties is CRHR/ECRHR > coal strength > rock strength > IA.
Laboratory investigation of the mechanical properties of coal-rock combined body
Abstract Understanding the behavior of the top-coal caving mining face and immediate roof can be used to enhance buffering effects. The mechanical properties of the coal-rock combined body (CRCB) play a vital role in the performance of overburden load transmittance and support resistance design. We define and derive the relative physical and mechanical parameters of CRCB to illustrate and analyze the influence of coal-rock height ratio (CRHR), coal and rock mass behavior, and interface parameters on CRCB mechanical properties. We conducted uniaxial compression tests to obtain uniaxial compressive strength (UCS), elastic modulus (EM), and the full range of stress–strain curves. Our results show that UCS is positively correlated with EM. However, CRCB EM and UCS decrease with increasing CRHR or effective coal-rock height ratio (ECRHR) and the slope of the curves gradually decreases. CRCB mechanical parameters increase linearly with EM of the coal or rock mass. Although increased coal-rock interface angles (IA) lead to increased CRCB mechanical parameters, the incremental value can be ignored. Sensitive analysis shows that the rank of influential factors on CRCB properties is CRHR/ECRHR > coal strength > rock strength > IA.
Laboratory investigation of the mechanical properties of coal-rock combined body
Cheng, Zhan-bo (author) / Li, Liang-Hui (author) / Zhang, Ya-Ning (author)
2019
Article (Journal)
Electronic Resource
English
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Laboratory investigation of the mechanical properties of coal-rock combined body
Online Contents | 2019
|