A platform for research: civil engineering, architecture and urbanism
Bioenergy with carbon capture and storage: are short-term issues set aside?
Abstract Negative emission technologies (NETs) are a set of technologies that could retrieve greenhouse gases from the atmosphere. NETs could dramatically contribute to maintaining the temperature increase to within the limit of 2 °C or even 1.5 °C. Bioenergy with carbon capture and storage (BECCS) is one of the most studied NETs. BECCS captures carbon dioxide ($ CO_{2} $) emissions coming from a bioenergy plant—e.g., electricity, biofuels, and hydrogen—and stores those emissions in a geologic reservoir, typically a saline aquifer. The purpose of this article is to investigate whether a research community exists on BECCS, and whether it is aligned with research priorities. To do so, a bibliometric analysis is conducted based on author collaborations on BECCS in academic journals between 2001 and 2017. The co-authorship network shows that BECCS research is largely based on the integrated assessment model (IAM) research community. These models analyze how power and transportation systems evolve under a climate constraint in the long run, e.g., until 2100. Such a focus has advantages and drawbacks. On the one hand, it helps to build a common vision of the technology and possible roadmaps. On the other hand, I highlight that the implementation features of BECCS in the near future are insufficiently assessed, e.g., techno-economic analyses, business models, local-scale assessments, and comparison with other NETs. These issues are marginal in the network, whereas long-term analyses are at its core. Future research programmes should better include them to avoid a considerable disappointment about the real potential of BECCS.
Bioenergy with carbon capture and storage: are short-term issues set aside?
Abstract Negative emission technologies (NETs) are a set of technologies that could retrieve greenhouse gases from the atmosphere. NETs could dramatically contribute to maintaining the temperature increase to within the limit of 2 °C or even 1.5 °C. Bioenergy with carbon capture and storage (BECCS) is one of the most studied NETs. BECCS captures carbon dioxide ($ CO_{2} $) emissions coming from a bioenergy plant—e.g., electricity, biofuels, and hydrogen—and stores those emissions in a geologic reservoir, typically a saline aquifer. The purpose of this article is to investigate whether a research community exists on BECCS, and whether it is aligned with research priorities. To do so, a bibliometric analysis is conducted based on author collaborations on BECCS in academic journals between 2001 and 2017. The co-authorship network shows that BECCS research is largely based on the integrated assessment model (IAM) research community. These models analyze how power and transportation systems evolve under a climate constraint in the long run, e.g., until 2100. Such a focus has advantages and drawbacks. On the one hand, it helps to build a common vision of the technology and possible roadmaps. On the other hand, I highlight that the implementation features of BECCS in the near future are insufficiently assessed, e.g., techno-economic analyses, business models, local-scale assessments, and comparison with other NETs. These issues are marginal in the network, whereas long-term analyses are at its core. Future research programmes should better include them to avoid a considerable disappointment about the real potential of BECCS.
Bioenergy with carbon capture and storage: are short-term issues set aside?
Laude, Audrey (author)
2019
Article (Journal)
Electronic Resource
English
BKL:
43.47
Globale Umweltprobleme
/
43.47$jGlobale Umweltprobleme
Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)
DOAJ | 2016
|Meeting global temperature targets—the role of bioenergy with carbon capture and storage
DOAJ | 2013
|Meeting global temperature targets—the role of bioenergy with carbon capture and storage
IOP Institute of Physics | 2013
|A bottom–up regional potential assessment of bioenergy with carbon capture and storage in Germany
DOAJ | 2024
|