A platform for research: civil engineering, architecture and urbanism
Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data
Abstract Tunnel squeezing occurs when time-dependent rock creep produces large tunnel convergence. The occurrence of tunnel squeezing may result in buget increase and time waste during tunnel construction. The aim of this study was to propose a robust classifier ensemble to predict squeezing conditions in rock tunnels. Seven individual machine learning classifiers were aggregated using weighted voting methods to establish the classifier ensemble. The weight and hyperparameters of each individual classifier were tuned using the firefly algorithm. The classifier ensemble was trained and tested on a dataset collected from published literature. Missing values in the database were replaced by various imputation methods. The results indicate that the proposed classifier ensemble achieved an accuracy of 96%, higher than that of the traditionally used individual classifiers. This robust ensemble method can be applied to other classification problems in civil engineering.
Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data
Abstract Tunnel squeezing occurs when time-dependent rock creep produces large tunnel convergence. The occurrence of tunnel squeezing may result in buget increase and time waste during tunnel construction. The aim of this study was to propose a robust classifier ensemble to predict squeezing conditions in rock tunnels. Seven individual machine learning classifiers were aggregated using weighted voting methods to establish the classifier ensemble. The weight and hyperparameters of each individual classifier were tuned using the firefly algorithm. The classifier ensemble was trained and tested on a dataset collected from published literature. Missing values in the database were replaced by various imputation methods. The results indicate that the proposed classifier ensemble achieved an accuracy of 96%, higher than that of the traditionally used individual classifiers. This robust ensemble method can be applied to other classification problems in civil engineering.
Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data
Zhang, Junfei (author) / Li, Dong (author) / Wang, Yuhang (author)
2020
Article (Journal)
Electronic Resource
English
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Predicting tunnel squeezing with incomplete data using Bayesian networks
Elsevier | 2015
|Predicting tunnel squeezing with incomplete data using Bayesian networks
Online Contents | 2015
|Predicting tunnel squeezing with incomplete data using Bayesian networks
Elsevier | 2015
|Predicting Tunnel Squeezing Using the SVM-BP Combination Model
Online Contents | 2021
|