A platform for research: civil engineering, architecture and urbanism
Putting Geological Focus Back into Rock Engineering Design
Abstract The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion.
Putting Geological Focus Back into Rock Engineering Design
Abstract The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion.
Putting Geological Focus Back into Rock Engineering Design
Carter, Trevor G. (author) / Marinos, Vassilis (author)
2020
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Putting inventory into sharper focus
British Library Online Contents | 2012
Putting Magic Back into Interpretation
British Library Conference Proceedings | 1992
|Putting energy back into glass
Tema Archive | 1983
Putting Place Back Into Infrastructure
Online Contents | 1995
|Putting swing back into old bridge
IuD Bahn | 2006
|