A platform for research: civil engineering, architecture and urbanism
Estimation of origin–destination matrices using link counts and partial path data
Abstract After several decades of work by several talented researchers, estimation of the origin–destination matrix using traffic data has remained very challenging. This paper presents a set of innovative methods for estimation of the origin–destination matrix of large-scale networks, using vehicle counts on links, partial path data obtained from an automated vehicle identification system, and combinations of both data. These innovative methods are used to solve three origin–destination matrix estimation models. The first model is an extension of Spiess’s model which uses vehicle count data while the second model is an extension of Jamali’s model and it uses partial path data. The third model is a multiobjective model which utilizes combinations of vehicle counts and partial path data. The methods were tested to estimate the origin–destination matrix of a large-scale network from Mashhad City with 163 traffic zones and 2093 links, and the results were compared with the conventional gradient-based algorithm. The results show that the innovative methods performed better as compared to the gradient-based algorithm.
Estimation of origin–destination matrices using link counts and partial path data
Abstract After several decades of work by several talented researchers, estimation of the origin–destination matrix using traffic data has remained very challenging. This paper presents a set of innovative methods for estimation of the origin–destination matrix of large-scale networks, using vehicle counts on links, partial path data obtained from an automated vehicle identification system, and combinations of both data. These innovative methods are used to solve three origin–destination matrix estimation models. The first model is an extension of Spiess’s model which uses vehicle count data while the second model is an extension of Jamali’s model and it uses partial path data. The third model is a multiobjective model which utilizes combinations of vehicle counts and partial path data. The methods were tested to estimate the origin–destination matrix of a large-scale network from Mashhad City with 163 traffic zones and 2093 links, and the results were compared with the conventional gradient-based algorithm. The results show that the innovative methods performed better as compared to the gradient-based algorithm.
Estimation of origin–destination matrices using link counts and partial path data
Rostami Nasab, Mojtaba (author) / Shafahi, Yousef (author)
Transportation ; 47
2019
Article (Journal)
English
Estimation of origin–destination matrices using link counts and partial path data
Online Contents | 2019
|Time-dependent estimation of origin–destination matrices using partial path data and link counts
Springer Verlag | 2025
|Estimation of Multiclass Origin-Destination Matrices from Traffic Counts
British Library Online Contents | 2005
|Estimation of Multiclass Origin-Destination Matrices from Traffic Counts
Online Contents | 2005
|Origin-Destination Matrices Estimated with a Genetic Algorithm from Link Traffic Counts
British Library Online Contents | 2001
|