A platform for research: civil engineering, architecture and urbanism
Characterization of Anisotropic Fracture Properties of Silurian Longmaxi Shale
Abstract Fracking is widely applied to enhance shale gas mining, and insight into the fracture behaviors of shale rocks is important. To characterize the fracture properties of Lower Silurian Longmaxi shale, a chevron-notched deep beam specimen, which inherits the advantages of notched deep beam and chevron-notched specimens, is introduced, and several three-point bend tests were conducted on the Longmaxi shale specimens in three principal fracture orientations: the divider, short-transverse, and arrester orientations; the anisotropy in the critical shape coefficient, fracture toughness and fracture energy were then examined and highlighted. The results demonstrate that the critical shape coefficient depends on the anisotropic elasticity of the investigated shale, and a maximum error in the calculated fracture toughness of 9.2% could occur if a critical shape coefficient for isotropic rock is adopted. For the tested shale, the mode I fracture toughness in the divider orientation is close to that in the arrester orientation, with both values being approximately 1.5 times that in the short-transverse orientation; in addition, a progressive decrease in fracture energy from the arrester orientation to the short-transverse orientation is apparent. The fracture surface morphology was observed by scanning electron microscopy, and obvious material deterioration was found near the fracture surfaces for the arrester and divider samples.
Characterization of Anisotropic Fracture Properties of Silurian Longmaxi Shale
Abstract Fracking is widely applied to enhance shale gas mining, and insight into the fracture behaviors of shale rocks is important. To characterize the fracture properties of Lower Silurian Longmaxi shale, a chevron-notched deep beam specimen, which inherits the advantages of notched deep beam and chevron-notched specimens, is introduced, and several three-point bend tests were conducted on the Longmaxi shale specimens in three principal fracture orientations: the divider, short-transverse, and arrester orientations; the anisotropy in the critical shape coefficient, fracture toughness and fracture energy were then examined and highlighted. The results demonstrate that the critical shape coefficient depends on the anisotropic elasticity of the investigated shale, and a maximum error in the calculated fracture toughness of 9.2% could occur if a critical shape coefficient for isotropic rock is adopted. For the tested shale, the mode I fracture toughness in the divider orientation is close to that in the arrester orientation, with both values being approximately 1.5 times that in the short-transverse orientation; in addition, a progressive decrease in fracture energy from the arrester orientation to the short-transverse orientation is apparent. The fracture surface morphology was observed by scanning electron microscopy, and obvious material deterioration was found near the fracture surfaces for the arrester and divider samples.
Characterization of Anisotropic Fracture Properties of Silurian Longmaxi Shale
Ren, L. (author) / Xie, H. P. (author) / Sun, X. (author) / Zhang, R. (author) / Li, C. B. (author) / Xie, J. (author) / Zhang, Z. T. (author)
2020
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Experimental Study on Longmaxi Shale Breaking Mechanism with Micro-PDC Bit
Online Contents | 2017
|