A platform for research: civil engineering, architecture and urbanism
Simulation Possibilites of the Post-Mining Goafs Impact on the Deformations Induced by Next Underground Mining Operations with Use of the Cellular Automata Method
Abstract Underground mining operations in the area of a rock mass affected by previous exploitation may cause additional deformations to appear on the surface. The size of these deformations can be significant, and their character is often non-linear. The nature of these deformations cannot be justified solely by the impact of current mining operations. At the same time, the predictive method of S. Knothe, widely used in Poland, does not explicitly include these types of phenomena. In the area of intensive and long-term mining exploitation, such as the Upper Silesian Coal Basin, the practical possibility of simulating this occurrence may be helpful in the planning of new mining exploitation under construction objects. Today we are usually limited to numerical modelling methods like finite difference method (FDM). This one base on the principle of mechanical similarity. The theoretical usefulness of method (and its similar) has already been proven many times. The main impediment to its practical application is the lack of recognition of the rock mass in terms of its mechanical properties. The presented method is a new approach to the possibility of modelling the subject phenomenon. The method has not been used in practical forecasting mining area deformation caused by underground deposits mining. It’s characterized by a huge potential for further development.
Simulation Possibilites of the Post-Mining Goafs Impact on the Deformations Induced by Next Underground Mining Operations with Use of the Cellular Automata Method
Abstract Underground mining operations in the area of a rock mass affected by previous exploitation may cause additional deformations to appear on the surface. The size of these deformations can be significant, and their character is often non-linear. The nature of these deformations cannot be justified solely by the impact of current mining operations. At the same time, the predictive method of S. Knothe, widely used in Poland, does not explicitly include these types of phenomena. In the area of intensive and long-term mining exploitation, such as the Upper Silesian Coal Basin, the practical possibility of simulating this occurrence may be helpful in the planning of new mining exploitation under construction objects. Today we are usually limited to numerical modelling methods like finite difference method (FDM). This one base on the principle of mechanical similarity. The theoretical usefulness of method (and its similar) has already been proven many times. The main impediment to its practical application is the lack of recognition of the rock mass in terms of its mechanical properties. The presented method is a new approach to the possibility of modelling the subject phenomenon. The method has not been used in practical forecasting mining area deformation caused by underground deposits mining. It’s characterized by a huge potential for further development.
Simulation Possibilites of the Post-Mining Goafs Impact on the Deformations Induced by Next Underground Mining Operations with Use of the Cellular Automata Method
Paweł, Sikora (author)
2020
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Stability Analysis Method to Underground Goafs in Opencast Mining Based on FEM
British Library Conference Proceedings | 2012
|Underground mines. Mining damage. Building damages. Surface deformations
British Library Conference Proceedings | 1999
|InSAR Monitoring of Subsidence Induced by Underground Mining Operations
British Library Conference Proceedings | 2019
|Numerical simulation of progressive failure from underground bulk mining operations
British Library Conference Proceedings | 1999
|British Library Conference Proceedings | 2009
|