A platform for research: civil engineering, architecture and urbanism
A 3DEC Numerical Analysis of the Interaction Between an Uneven Rock Surface and Shotcrete Lining
Abstract Rock tunnels excavated using drilling and blasting technique in jointed rock masses often have a very uneven and rough excavation surface. Experience from previous studies shows that the unevenness of a rock surface has a large impact on the support effect of shotcrete lining. However, clear conclusions regarding the effect of 2D and 3D uneven surfaces were not obtained due to limited studies in the literature. The numerical analyses reported in this paper were made to investigate the influence of the surface unevenness of a circular tunnel opening on the support effect of shotcrete using a 3D numerical code (3DEC). The models were first calibrated with the help of observations and measured data obtained from physical model tests. The influential factors were investigated further in this numerical study after calibration had been achieved. The numerical analyses show that, in general, the unevenness of a tunnel surface produces negative support effects due to stress concentrations in recesses (compressive) and at apexes (tensile) after excavation. However, shotcrete sprayed on a doubly waved uneven surface has better support effect compared to shotcrete sprayed on a simply waved tunnel surface. The development of shear strength (specifically frictional strength) on the uneven interface between the shotcrete and the rock contributes to this effect, in the condition where bonding of the shotcrete does not work effectively. The interface is a crucial element when the interaction between the rock and shotcrete is to be simulated. When an entire tunnel surface is covered by shotcrete with high modulus, more failures will occur in the shotcrete especially when rock surface is uneven. Based on the numerical model cases examined, some recommendations on how to incorporate tunnel surface conditions (2D or 3D unevenness) in the design of a shotcrete lining are given.
A 3DEC Numerical Analysis of the Interaction Between an Uneven Rock Surface and Shotcrete Lining
Abstract Rock tunnels excavated using drilling and blasting technique in jointed rock masses often have a very uneven and rough excavation surface. Experience from previous studies shows that the unevenness of a rock surface has a large impact on the support effect of shotcrete lining. However, clear conclusions regarding the effect of 2D and 3D uneven surfaces were not obtained due to limited studies in the literature. The numerical analyses reported in this paper were made to investigate the influence of the surface unevenness of a circular tunnel opening on the support effect of shotcrete using a 3D numerical code (3DEC). The models were first calibrated with the help of observations and measured data obtained from physical model tests. The influential factors were investigated further in this numerical study after calibration had been achieved. The numerical analyses show that, in general, the unevenness of a tunnel surface produces negative support effects due to stress concentrations in recesses (compressive) and at apexes (tensile) after excavation. However, shotcrete sprayed on a doubly waved uneven surface has better support effect compared to shotcrete sprayed on a simply waved tunnel surface. The development of shear strength (specifically frictional strength) on the uneven interface between the shotcrete and the rock contributes to this effect, in the condition where bonding of the shotcrete does not work effectively. The interface is a crucial element when the interaction between the rock and shotcrete is to be simulated. When an entire tunnel surface is covered by shotcrete with high modulus, more failures will occur in the shotcrete especially when rock surface is uneven. Based on the numerical model cases examined, some recommendations on how to incorporate tunnel surface conditions (2D or 3D unevenness) in the design of a shotcrete lining are given.
A 3DEC Numerical Analysis of the Interaction Between an Uneven Rock Surface and Shotcrete Lining
Zhang, Ping (author) / Nordlund, Ering (author)
2021
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Analysis on Interfacial Stress Between Surrounding Rock and Shotcrete Lining
British Library Online Contents | 2012
|3DEC Numerical Analysis of Failure Characteristics for Tunnel in Stratified Rock Masses
Springer Verlag | 2024
|Time-dependent rock—Shotcrete interaction a numerical shortcut
Elsevier | 1990
|Monocoque Tunnel Lining with Shotcrete
British Library Online Contents | 1996
Numerical investigation of the failure of a shotcrete lining
British Library Conference Proceedings | 2006
|