A platform for research: civil engineering, architecture and urbanism
Pore and compression characteristics of clay solidified by ionic soil stabilizer
Abstract It is of great significance to study the soil pore structure for soil reinforcement and ground treatment because it can be used to evaluate the solidification effect and explain the curing mechanism. The pore and compression characteristics of clay from Wuhan in China before and after solidification by ionic soil stabilizer (ISS) in different soil initial states were studied by the use of standard consolidation test, environmental scanning electron microscope analysis, specific surface area (SSA) test, and analysis by PCAS software. Results show that the influence sequence of soil initial states on the change of pore characteristics and ISS-solidification effectiveness was as follows: reducing initial water content + remolding soil > reducing initial water content > remolding soil > natural soil with high initial water content. Besides, loading can also increase the solidification effect. Compared to random and chaotic pore directions of natural clay, remolded solidified clay had a more certain direction after curing and compression. In addition, the total pore number and SSA decreased from 1190 to 756 by 36.47% and 109.690 $ m^{2} $/g to 87.837 $ m^{2} $/g by 19.92% respectively. Results indicate that ISS-clay solidification effect in practical engineering is closely related to the soil initial pre-curing state and can lead to the change of pore direction, decrease of pore number, reduction of pore size and porosity, and formation of larger aggregates.
Pore and compression characteristics of clay solidified by ionic soil stabilizer
Abstract It is of great significance to study the soil pore structure for soil reinforcement and ground treatment because it can be used to evaluate the solidification effect and explain the curing mechanism. The pore and compression characteristics of clay from Wuhan in China before and after solidification by ionic soil stabilizer (ISS) in different soil initial states were studied by the use of standard consolidation test, environmental scanning electron microscope analysis, specific surface area (SSA) test, and analysis by PCAS software. Results show that the influence sequence of soil initial states on the change of pore characteristics and ISS-solidification effectiveness was as follows: reducing initial water content + remolding soil > reducing initial water content > remolding soil > natural soil with high initial water content. Besides, loading can also increase the solidification effect. Compared to random and chaotic pore directions of natural clay, remolded solidified clay had a more certain direction after curing and compression. In addition, the total pore number and SSA decreased from 1190 to 756 by 36.47% and 109.690 $ m^{2} $/g to 87.837 $ m^{2} $/g by 19.92% respectively. Results indicate that ISS-clay solidification effect in practical engineering is closely related to the soil initial pre-curing state and can lead to the change of pore direction, decrease of pore number, reduction of pore size and porosity, and formation of larger aggregates.
Pore and compression characteristics of clay solidified by ionic soil stabilizer
Wu, Xue-Ting (author) / Sun, Jin-Shan (author) / Qi, Yi (author) / Chen, Bin (author)
2021
Article (Journal)
Electronic Resource
English
BKL:
56.00$jBauwesen: Allgemeines
/
38.58
Geomechanik
/
38.58$jGeomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
56.00
Bauwesen: Allgemeines
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB18
Experimental Study on Dynamic Characteristics of Ionic Soil Stabilizer Reinforcing Red Clay
British Library Conference Proceedings | 2012
|Method for preparing solidified soil by utilizing soil stabilizer
European Patent Office | 2020
|Micro-Treatment Mechanism Study on Ionic Soil Stabilizer Improving Clay
British Library Online Contents | 2016
|Study on Ionic Soil Stabilizer Reinforcing Red Clay of Wuhan
British Library Conference Proceedings | 2011
|