A platform for research: civil engineering, architecture and urbanism
Effective Thermal Conductivity Estimation of Fractured Rock Masses
Abstract In this work, effective thermal conductivity (λEff) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λEff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [λIntact, 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density (FDensity), trace length (FLength), thermal contact resistance (FTCR), and λIntact. The results indicate the relation between λEff and three fracture parameters (FDensity, Flength and FTCR) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λEff is in linear positive correlation to λIntact. The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λEff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λEff of fractured rock masses using $ P_{21} $ (total length of fracture traces per unit area), FTCR, and λIntact. The proposed estimation model shows good consistency to the calculated results of FEM model.
Effective Thermal Conductivity Estimation of Fractured Rock Masses
Abstract In this work, effective thermal conductivity (λEff) of fractured rock masses was numerically investigated. A two-dimensional Discrete Fracture Network (DFN) model of the fractured rock masses was established based on the statistic results of natural fracture development in a potential area for high level radioactive waste disposal in China. Steady state heat transfer processes in the fractured granite rock masses were numerically simulated using finite element method (FEM). The calculated λEff values of the fractured granite rock masses in dry and saturated conditions are 1.99 W/(m K) and 2.31 W/(m K), respectively. Compared with the thermal conductivity of intact granite [λIntact, 2.5 W/(m K)], the drop rates are 20.4% and 7.6%, respectively. Sensitivity analysis was conducted on the main model parameters including fracture density (FDensity), trace length (FLength), thermal contact resistance (FTCR), and λIntact. The results indicate the relation between λEff and three fracture parameters (FDensity, Flength and FTCR) can be fitted using power law or negative exponent functions with good consistency. When fracture network parameters remain unchanged, λEff is in linear positive correlation to λIntact. The slop of the fitted line is determined by the fracture network parameters. Due to the fact that distribution of generated fractures in different directions are quite uniform, λEff did not show significant difference in different directions. On the basis of the above-mentioned results, an estimation model was proposed for the determination of λEff of fractured rock masses using $ P_{21} $ (total length of fracture traces per unit area), FTCR, and λIntact. The proposed estimation model shows good consistency to the calculated results of FEM model.
Effective Thermal Conductivity Estimation of Fractured Rock Masses
Li, Zheng-Wei (author) / Liu, Yuan (author) / Mei, Shi-Ming (author) / Xing, Shi-Cheng (author) / Wang, Xiao-Kai (author)
2021
Article (Journal)
Electronic Resource
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
RVK:
ELIB41
Modelling of fractured rock masses
British Library Conference Proceedings | 2002
|Elsevier | 2025
|Estimation of Elastic Moduli of Non-persistent Fractured Rock Masses
British Library Online Contents | 2016
|Estimation of Elastic Moduli of Non-persistent Fractured Rock Masses
Online Contents | 2015
|Estimation of Elastic Moduli of Non-persistent Fractured Rock Masses
Online Contents | 2015
|