A platform for research: civil engineering, architecture and urbanism
Influence of Earthquake Characteristics on Pervious Concrete Column Improved Ground
Abstract In this paper, the influence of earthquake characteristics on the seismic performance of ground improved with pervious concrete columns in place of conventional stone columns is presented. Two scaled earthquake ground motions with different seismic characteristics are applied to the finite element models of ground with and without column inclusions. Total stress analysis is also conducted and compared with effective stress analysis on maximum response profile along the depth of column improved ground. The study is further extended to sandwiched liquefiable soil deposits of varying thickness. It is noted that the average lateral displacement reduction of the pervious concrete column improved ground is 90% when compared to unimproved sand strata when subjected to two different earthquake excitations. It is found that the generation of excess pore pressure reaches near zero values when the permeability of pervious concrete column is greater than 0.3 m/s irrespective of the characteristics of the earthquake events. From total stress analysis and effective stress analysis, it is observed that for column improved ground, in addition to pore pressure build-up, the maximum response profile is highly influenced by significant duration and frequency of seismic excitation. The pervious concrete column performed better in homogeneous sand deposit as well as sandwiched liquefiable soil of varying thickness when subjected to different seismic excitations with different characteristics.
Influence of Earthquake Characteristics on Pervious Concrete Column Improved Ground
Abstract In this paper, the influence of earthquake characteristics on the seismic performance of ground improved with pervious concrete columns in place of conventional stone columns is presented. Two scaled earthquake ground motions with different seismic characteristics are applied to the finite element models of ground with and without column inclusions. Total stress analysis is also conducted and compared with effective stress analysis on maximum response profile along the depth of column improved ground. The study is further extended to sandwiched liquefiable soil deposits of varying thickness. It is noted that the average lateral displacement reduction of the pervious concrete column improved ground is 90% when compared to unimproved sand strata when subjected to two different earthquake excitations. It is found that the generation of excess pore pressure reaches near zero values when the permeability of pervious concrete column is greater than 0.3 m/s irrespective of the characteristics of the earthquake events. From total stress analysis and effective stress analysis, it is observed that for column improved ground, in addition to pore pressure build-up, the maximum response profile is highly influenced by significant duration and frequency of seismic excitation. The pervious concrete column performed better in homogeneous sand deposit as well as sandwiched liquefiable soil of varying thickness when subjected to different seismic excitations with different characteristics.
Influence of Earthquake Characteristics on Pervious Concrete Column Improved Ground
Rashma, R. S. V. (author) / Jayalekshmi, B. R. (author) / Shivashankar, R. (author)
2022
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Shear Response of Pervious Concrete Column Improved Ground
Springer Verlag | 2021
|Shear Response of Pervious Concrete Column Improved Ground
Springer Verlag | 2021
|Liquefaction Mitigation Potential of Improved Ground Using Pervious Concrete Columns
Springer Verlag | 2022
|