A platform for research: civil engineering, architecture and urbanism
Response Characteristics of Slope Subjected to Blasting: A Case Study in Manaoke Open-pit Gold Mine
Abstract Frequent production blasting is an important factor affecting the slope stability in open-pit mines; thus, it is essential to monitor and analyze blasting vibrations in open-pit mines. In this study, blasting vibration on the slope of an open-pit gold mine in Manaoke was monitored. First, regression analysis was performed on the monitoring results using the Sadowski formula, and the attenuation law of the slope blasting vibration was established. Second, the damage depth of the retained rock mass was determined using ultrasonic velocimetry, and the relationship between the damage depth and peak particle vibration velocity was fitted. Third, the Midas numerical software was used to analyze the stability of the slope under blasting vibration conditions. The results showed that the fitted vibration attenuation formula was close for four consecutive days, and the slope blasting activity was within a safe range. Ultrasonic velocity measurements showed that the damage depth of the reserved rock mass after blasting was between 1.0 and 1.5 m. The damage depth had a good correlation with the peak particle vibration velocity, which can adequately predict future reserved rock mass damage. The final numerical calculation results showed that the slope was in a stable state, and the slope stability was not considerably affected under the daily blasting vibration conditions. Thus, the blasting activities were in a safe range.
Response Characteristics of Slope Subjected to Blasting: A Case Study in Manaoke Open-pit Gold Mine
Abstract Frequent production blasting is an important factor affecting the slope stability in open-pit mines; thus, it is essential to monitor and analyze blasting vibrations in open-pit mines. In this study, blasting vibration on the slope of an open-pit gold mine in Manaoke was monitored. First, regression analysis was performed on the monitoring results using the Sadowski formula, and the attenuation law of the slope blasting vibration was established. Second, the damage depth of the retained rock mass was determined using ultrasonic velocimetry, and the relationship between the damage depth and peak particle vibration velocity was fitted. Third, the Midas numerical software was used to analyze the stability of the slope under blasting vibration conditions. The results showed that the fitted vibration attenuation formula was close for four consecutive days, and the slope blasting activity was within a safe range. Ultrasonic velocity measurements showed that the damage depth of the reserved rock mass after blasting was between 1.0 and 1.5 m. The damage depth had a good correlation with the peak particle vibration velocity, which can adequately predict future reserved rock mass damage. The final numerical calculation results showed that the slope was in a stable state, and the slope stability was not considerably affected under the daily blasting vibration conditions. Thus, the blasting activities were in a safe range.
Response Characteristics of Slope Subjected to Blasting: A Case Study in Manaoke Open-pit Gold Mine
Li, Qinglin (author) / Dai, Bijiang (author) / Long, Lujun (author) / Zhang, Dongming (author) / Liang, Feng (author)
2022
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Controlled blasting in an open-pit mine for improved slope stability
Online Contents | 1995
|Dynamic response characteristics of a rock slope under blasting excavation
Springer Verlag | 2021
|Dynamic response characteristics of a rock slope under blasting excavation
Online Contents | 2021
|Slope Stability During Blasting: A Case History
British Library Conference Proceedings | 1992
|