A platform for research: civil engineering, architecture and urbanism
Risk Evaluation of Mine-Water Inrush Based on Comprehensive Weight Method
Abstract This paper presents a method for evaluation floor water inrush risk using combined weighting and analytic hierarchy process. The method is validated by a case study at the Pengzhuang coal mine in Shandong Province, China. First, the relevant geological background, hydrogeological data and related data were collected and analyzed, and the risk evaluation index of water inrush from the floor was determined. Then, combined with principal component analysis, entropy weight method and analytic hierarchy process, a comprehensive evaluation model was constructed to determine the comprehensive weights of each surge evaluation index. Finally, based on the GIS geographic information processing system, the optimized comprehensive weighting mathematical model was combined with the vulnerability index method to determine the water inrush risk division. The results show that the improved integrated weighting model is more accurate than the improved comprehensive weighting model. At the same time, the evaluation results obtained by comparing the traditional water inrush coefficient method have verified the reasonableness of the evaluation model. The results can provide a theoretical basis for the safe mining of coal seam above confined groundwater.
Risk Evaluation of Mine-Water Inrush Based on Comprehensive Weight Method
Abstract This paper presents a method for evaluation floor water inrush risk using combined weighting and analytic hierarchy process. The method is validated by a case study at the Pengzhuang coal mine in Shandong Province, China. First, the relevant geological background, hydrogeological data and related data were collected and analyzed, and the risk evaluation index of water inrush from the floor was determined. Then, combined with principal component analysis, entropy weight method and analytic hierarchy process, a comprehensive evaluation model was constructed to determine the comprehensive weights of each surge evaluation index. Finally, based on the GIS geographic information processing system, the optimized comprehensive weighting mathematical model was combined with the vulnerability index method to determine the water inrush risk division. The results show that the improved integrated weighting model is more accurate than the improved comprehensive weighting model. At the same time, the evaluation results obtained by comparing the traditional water inrush coefficient method have verified the reasonableness of the evaluation model. The results can provide a theoretical basis for the safe mining of coal seam above confined groundwater.
Risk Evaluation of Mine-Water Inrush Based on Comprehensive Weight Method
Zhao, Zhijun (author) / Gu, Jingmei (author)
2022
Article (Journal)
Electronic Resource
English
BKL:
57.00$jBergbau: Allgemeines
/
38.58
Geomechanik
/
57.00
Bergbau: Allgemeines
/
56.20
Ingenieurgeologie, Bodenmechanik
/
38.58$jGeomechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
Comprehensive Assessment of Water Inrush Risk in Deep Mining of Beiminghe Iron Mine
British Library Conference Proceedings | 2011
|Risk Early Warning Evaluation of Coal Mine Water Inrush Based on Complex Network and Its Application
DOAJ | 2021
|Water Inrush Risk Evaluation into the Tanjiaba Tunnel
British Library Conference Proceedings | 2014
|