A platform for research: civil engineering, architecture and urbanism
Passive noise control in buildings: An engineering case study of ducted systems
The most common noise sources in buildings are related to Heating, Ventilating and Air Conditioning (HVAC) systems, plumbing systems, electrical systems and exterior sources. Passive Noise Control (PNC) techniques in buildings have been implemented in several ways. The aim of this work is to analyses the use of silencer to attenuate the noise in the ducts that are part of the ventilation systems in buildings, internal combustion systems, fans, gas conduction systems, boilers, etc. The main objective of a silencer is to reduce the transmission of noise, disturbing as little as possible the circulation of gas or liquid. In the first instance, the silencers are classified as reactive and dissipative, depending on whether the attenuation of the noise is produced by reflective or dissipative mechanisms, respectively. In a reactive silencer, the losses occur essentially due to the reflections of the sound waves in impedance discontinuities, such as widening or narrowing of the tube. In dissipative silencers, the flow is in contact with a large surface of absorbent material. The attenuation of the noise is then produced by visco-thermal losses in the porous material. In this work, a practical issue will be addressed with a noise reduction of 19 dBA in 60 Hz.
Passive noise control in buildings: An engineering case study of ducted systems
The most common noise sources in buildings are related to Heating, Ventilating and Air Conditioning (HVAC) systems, plumbing systems, electrical systems and exterior sources. Passive Noise Control (PNC) techniques in buildings have been implemented in several ways. The aim of this work is to analyses the use of silencer to attenuate the noise in the ducts that are part of the ventilation systems in buildings, internal combustion systems, fans, gas conduction systems, boilers, etc. The main objective of a silencer is to reduce the transmission of noise, disturbing as little as possible the circulation of gas or liquid. In the first instance, the silencers are classified as reactive and dissipative, depending on whether the attenuation of the noise is produced by reflective or dissipative mechanisms, respectively. In a reactive silencer, the losses occur essentially due to the reflections of the sound waves in impedance discontinuities, such as widening or narrowing of the tube. In dissipative silencers, the flow is in contact with a large surface of absorbent material. The attenuation of the noise is then produced by visco-thermal losses in the porous material. In this work, a practical issue will be addressed with a noise reduction of 19 dBA in 60 Hz.
Passive noise control in buildings: An engineering case study of ducted systems
Ibarra-Zarate, David I (author) / Navas-Reascos, Gustavo (author) / Padilla-Ortiz, AL (author)
Building Services Engineering Research & Technology ; 42 ; 751-762
2021-11-01
12 pages
Article (Journal)
Electronic Resource
English
Ducted Fan Noise Propagation Using Boundary Element Methods
British Library Conference Proceedings | 2009
|Case Study of Passive Solar Buildings in Korea
British Library Conference Proceedings | 1993
|Active/passive vibration control systems for tall buildings
British Library Online Contents | 1998
|