A platform for research: civil engineering, architecture and urbanism
In this research article, a novel navigational approach has been introduced for underwater robot based on learning and self-adaptation ability of adaptive neuro-fuzzy inference system. For avoiding obstacles during three-dimensional navigation, two adaptive neuro-fuzzy inference system models have been coupled to find out required change in heading angles of underwater robot in horizontal and vertical planes, respectively. A new hybrid learning scheme has been proposed for adaptive neuro-fuzzy inference system. Here, memetic approach based shuffled frog leaping algorithm has been used to tune the premise parameters and consequent parameters has been estimated through recursive least square estimation. Minimization of error in output of adaptive neuro-fuzzy inference system model has been treated as major objective of evolutionary-based training algorithm. Preliminary robotic behaviors of underwater robot have been successfully executed by implementing such well-trained adaptive neuro-fuzzy inference system architecture within three-dimensional unspecified workspace. Navigational performance of adaptive neuro-fuzzy inference system trained with the proposed hybrid learning algorithm has been compared with other three-dimensional navigational approaches in simulation mode for authentication purpose. Experimental verification has also been carried out to validate the feasibility and efficiency of the proposed navigational strategy.
In this research article, a novel navigational approach has been introduced for underwater robot based on learning and self-adaptation ability of adaptive neuro-fuzzy inference system. For avoiding obstacles during three-dimensional navigation, two adaptive neuro-fuzzy inference system models have been coupled to find out required change in heading angles of underwater robot in horizontal and vertical planes, respectively. A new hybrid learning scheme has been proposed for adaptive neuro-fuzzy inference system. Here, memetic approach based shuffled frog leaping algorithm has been used to tune the premise parameters and consequent parameters has been estimated through recursive least square estimation. Minimization of error in output of adaptive neuro-fuzzy inference system model has been treated as major objective of evolutionary-based training algorithm. Preliminary robotic behaviors of underwater robot have been successfully executed by implementing such well-trained adaptive neuro-fuzzy inference system architecture within three-dimensional unspecified workspace. Navigational performance of adaptive neuro-fuzzy inference system trained with the proposed hybrid learning algorithm has been compared with other three-dimensional navigational approaches in simulation mode for authentication purpose. Experimental verification has also been carried out to validate the feasibility and efficiency of the proposed navigational strategy.
Navigational strategy for underwater mobile robot based on adaptive neuro-fuzzy inference system model embedded with shuffled frog leaping algorithm–based hybrid learning approach
2017-11-01
19 pages
Article (Journal)
Electronic Resource
English
Performance of Shuffled Frog-Leaping Algorithm in Finance-Based Scheduling
Online Contents | 2012
|Performance of Shuffled Frog-Leaping Algorithm in Finance-Based Scheduling
British Library Online Contents | 2012
|