A platform for research: civil engineering, architecture and urbanism
Bi-objective optimization for a plug-in PV/battery system of an unmanned patrol boat
Plug-in photovoltaics (PV)/battery power systems attract increasing interest due to their merits in zero fuel consumption and zero local emission. However, current optimization for the plug-in PV/battery power system only considers a single objective of minimizing lifecycle cost, which may result in increased lifecycle greenhouse gas (GHG) emission due to electricity generation from coal in some areas. The paper therefore proposes a bi-objective optimization methodology to find out an optimal trade-off between lifecycle cost and GHG emission. Non-dominated sorting genetic algorithm II is developed to explore the Pareto solution sets. An unmanned patrol boat is considered as a study case. Simulation results show that the optimal design from the bi-objective optimization gains a 12.6% reduction in lifecycle cost and a 53.8% reduction in GHG emission when compared with the conventional power system consisting of diesel engines and generators. Moreover, the optimal design achieves a 46.3% reduction in GHG emission compared with the single-objective one aimed at minimum lifecycle cost, which at the same time increases the lifecycle cost by just 0.6%. Besides, two variables (the number of PV array and the number of battery modules) are found to be the most sensitive to the contradiction between lifecycle cost and GHG emission.
Bi-objective optimization for a plug-in PV/battery system of an unmanned patrol boat
Plug-in photovoltaics (PV)/battery power systems attract increasing interest due to their merits in zero fuel consumption and zero local emission. However, current optimization for the plug-in PV/battery power system only considers a single objective of minimizing lifecycle cost, which may result in increased lifecycle greenhouse gas (GHG) emission due to electricity generation from coal in some areas. The paper therefore proposes a bi-objective optimization methodology to find out an optimal trade-off between lifecycle cost and GHG emission. Non-dominated sorting genetic algorithm II is developed to explore the Pareto solution sets. An unmanned patrol boat is considered as a study case. Simulation results show that the optimal design from the bi-objective optimization gains a 12.6% reduction in lifecycle cost and a 53.8% reduction in GHG emission when compared with the conventional power system consisting of diesel engines and generators. Moreover, the optimal design achieves a 46.3% reduction in GHG emission compared with the single-objective one aimed at minimum lifecycle cost, which at the same time increases the lifecycle cost by just 0.6%. Besides, two variables (the number of PV array and the number of battery modules) are found to be the most sensitive to the contradiction between lifecycle cost and GHG emission.
Bi-objective optimization for a plug-in PV/battery system of an unmanned patrol boat
Wang, Wenyang (author) / Chen, Li (author) / Liang, Xiaofeng (author)
2023-08-01
17 pages
Article (Journal)
Electronic Resource
English
MULTIPURPOSE REAL-TIME REMOTE UNMANNED CONTROL AND PATROL BOAT SYSTEM
European Patent Office | 2022
|Online Contents | 1998
CUMMINS BOOSTS PATROL BOAT PERFORMANCE
Online Contents | 1996
GROTE STERN: High-Speed Patrol Boat
Online Contents | 1995
DIAB supplies core materials for patrol boat
British Library Online Contents | 2004