A platform for research: civil engineering, architecture and urbanism
Concrete crack detection and 3D mapping by integrated convolutional neural networks architecture
This paper presents an image-based crack detection system, in which its architecture is modified to use deep convolutional neural networks in a feature extraction step and other classifiers in the classification step. In the classification step, classifiers including Support Vector machines (SVMs), Random Forest (RF) and Evolutionary Artificial Neural Network (EANN) are used as an alternative to a Softmax classifier and the performance of these classifiers are studied. The data set was created from various types of concrete structures using a standard digital camera and an unmanned aerial vehicle (UAV). The collected images are used in the crack detection system and in creating a 3D model of a sample concrete building using an image- based 3D photogrammetry technique. Then, the 3D model is used to create a mosaic image, in which the crack detection system was applied to create a global view of a crack density map. The map is then projected onto the 3D model to allow cracks to be located in the 3D world. A comparative study was conducted on the proposed crack detection system and the results prove that the combined architecture of CNN as a feature extractor and SVM as a classifier shows the best performance with the accuracy of 92.80. The results also show that the modified architecture by integrating CNN and other types of classifiers can improve a system performance, which is better than using the Softmax classifier.
Concrete crack detection and 3D mapping by integrated convolutional neural networks architecture
This paper presents an image-based crack detection system, in which its architecture is modified to use deep convolutional neural networks in a feature extraction step and other classifiers in the classification step. In the classification step, classifiers including Support Vector machines (SVMs), Random Forest (RF) and Evolutionary Artificial Neural Network (EANN) are used as an alternative to a Softmax classifier and the performance of these classifiers are studied. The data set was created from various types of concrete structures using a standard digital camera and an unmanned aerial vehicle (UAV). The collected images are used in the crack detection system and in creating a 3D model of a sample concrete building using an image- based 3D photogrammetry technique. Then, the 3D model is used to create a mosaic image, in which the crack detection system was applied to create a global view of a crack density map. The map is then projected onto the 3D model to allow cracks to be located in the 3D world. A comparative study was conducted on the proposed crack detection system and the results prove that the combined architecture of CNN as a feature extractor and SVM as a classifier shows the best performance with the accuracy of 92.80. The results also show that the modified architecture by integrating CNN and other types of classifiers can improve a system performance, which is better than using the Softmax classifier.
Concrete crack detection and 3D mapping by integrated convolutional neural networks architecture
Chaiyasarn, Krisada (author) / Buatik, Apichat (author) / Likitlersuang, Suched (author)
Advances in Structural Engineering ; 24 ; 1480-1494
2021-05-01
15 pages
Article (Journal)
Electronic Resource
English
Structural crack detection using deep convolutional neural networks
Elsevier | 2021
|Autonomous concrete crack detection using deep fully convolutional neural network
British Library Online Contents | 2019
|Interpretability Analysis of Convolutional Neural Networks for Crack Detection
DOAJ | 2023
|