A platform for research: civil engineering, architecture and urbanism
Kinetic studies on using photocatalytic coatings for removal of indoor volatile organic compounds
Titanium dioxide (TiO2) is a known photocatalyst with a capability of decomposing organic substances. However, the photocatalysis of the pure TiO2 is not effective for the indoor environment due to a lack of the ultraviolet irradiation inside a building. Doping TiO2 with substance such as C, N, or metal can extend the threshold of the absorption spectrum to the visible spectrum region. Thus, doped-TiO2 is able to decompose volatile organic compounds (VOCs) under an indoor environment. To date, most experimental works reported on photocatalytic kinetics were conducted inside small-scale devices. The performance of air purification function under the actual indoor application scenery need to be further clarified. For this purpose, it is crucial to predict the performance of autogenous air quality improvements by visible light-driven photocatalyst for the actual applications. This work has developed a model to evaluate the performance of functional coating with photocatalyst in removing VOCs. Factors such as the effects of coating designs and indoor ambient conditions on the air purification efficiency were studied. This work demonstrates that doped-TiO2 photocatalytic coating is effective to improve the indoor air quality.
Kinetic studies on using photocatalytic coatings for removal of indoor volatile organic compounds
Titanium dioxide (TiO2) is a known photocatalyst with a capability of decomposing organic substances. However, the photocatalysis of the pure TiO2 is not effective for the indoor environment due to a lack of the ultraviolet irradiation inside a building. Doping TiO2 with substance such as C, N, or metal can extend the threshold of the absorption spectrum to the visible spectrum region. Thus, doped-TiO2 is able to decompose volatile organic compounds (VOCs) under an indoor environment. To date, most experimental works reported on photocatalytic kinetics were conducted inside small-scale devices. The performance of air purification function under the actual indoor application scenery need to be further clarified. For this purpose, it is crucial to predict the performance of autogenous air quality improvements by visible light-driven photocatalyst for the actual applications. This work has developed a model to evaluate the performance of functional coating with photocatalyst in removing VOCs. Factors such as the effects of coating designs and indoor ambient conditions on the air purification efficiency were studied. This work demonstrates that doped-TiO2 photocatalytic coating is effective to improve the indoor air quality.
Kinetic studies on using photocatalytic coatings for removal of indoor volatile organic compounds
Jiang, Zhuoying (author) / Yu, Xiong (author)
Indoor and Built Environment ; 29 ; 689-700
2020-06-01
12 pages
Article (Journal)
Electronic Resource
English
Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art
Online Contents | 2007
|Volatile organic compounds within indoor environments in Australia
British Library Online Contents | 2017
|Understanding semi-volatile organic compounds in indoor dust
SAGE Publications | 2022
|Volatile organic compounds within indoor environments in Australia
British Library Online Contents | 2017
|