A platform for research: civil engineering, architecture and urbanism
Low-carbon environmental control system for storage of earthen relics in exhibition hall: From the perspectives of nature based solution
For the purpose of effectively providing protection and utilization of historical earthen sites, the fully-enclosed exhibition halls with electricity driven air-conditioning have been successfully adopted to provide a suitable preservation air environment. However, its electricity consumption and carbon emissions are considerable due to the continuous operation of environmental control, the energy consumption of air cooling in exhibition halls can reach more than 10 times that of office buildings. To further reduce energy consumption, this current study drew on the concept of NBS (Nature Based Solution) and proposed a low-carbon environmental control system for an enclosed exhibition hall for storage of earthen relics by applying natural energy (solar photovoltaic and earth-air-cooling) and space optimization. Firstly, a numerical model was established to simulate the preservation environment in exhibition halls and the electricity consumption of each energy subsystem. Then the model was applied to optimize the design parameters (e.g. earth-air tunnel and airflow pattern) for the environmental control system. Numerical results showed that the electricity consumption was reduced by 58% by applying earth-air-cooling and solar photovoltaic. After optimization of the exhibition hall height, electricity consumption was approximately reduced by 65%. This research is of great value to mitigate energy consumption problems encountered in earthen relics museums and other similar environments.
Low-carbon environmental control system for storage of earthen relics in exhibition hall: From the perspectives of nature based solution
For the purpose of effectively providing protection and utilization of historical earthen sites, the fully-enclosed exhibition halls with electricity driven air-conditioning have been successfully adopted to provide a suitable preservation air environment. However, its electricity consumption and carbon emissions are considerable due to the continuous operation of environmental control, the energy consumption of air cooling in exhibition halls can reach more than 10 times that of office buildings. To further reduce energy consumption, this current study drew on the concept of NBS (Nature Based Solution) and proposed a low-carbon environmental control system for an enclosed exhibition hall for storage of earthen relics by applying natural energy (solar photovoltaic and earth-air-cooling) and space optimization. Firstly, a numerical model was established to simulate the preservation environment in exhibition halls and the electricity consumption of each energy subsystem. Then the model was applied to optimize the design parameters (e.g. earth-air tunnel and airflow pattern) for the environmental control system. Numerical results showed that the electricity consumption was reduced by 58% by applying earth-air-cooling and solar photovoltaic. After optimization of the exhibition hall height, electricity consumption was approximately reduced by 65%. This research is of great value to mitigate energy consumption problems encountered in earthen relics museums and other similar environments.
Low-carbon environmental control system for storage of earthen relics in exhibition hall: From the perspectives of nature based solution
Xin, Guanbai (author) / Feng, Zhuangbo (author) / Zhang, Xingpeng (author) / Wang, Junqi (author) / Cao, Shi-Jie (author)
Indoor and Built Environment ; 33 ; 1100-1117
2024-07-01
Article (Journal)
Electronic Resource
English
European Patent Office | 2023
Earthen Materials and Earthen Structures
Springer Verlag | 2022
|British Library Online Contents | 1998
|