A platform for research: civil engineering, architecture and urbanism
The use of genetic algorithm and self-updating artificial neural network for the inverse design of cabin environment
The inverse process of computational fluid dynamics was used to explore the expected indoor environment with the preset objectives. An inverse design method integrating genetic algorithm and self-updating artificial neural network is presented. To reduce the computational cost and eliminate the impact of prediction error of artificial neural network, a self-updating artificial neural network is proposed to realize the self-adaption of computational fluid dynamics database, where all the design objectives of solutions are obtained by computational fluid dynamics instead of artificial neural network. The proposed method was applied to the inverse design of an MD-82 aircraft cabin. The result shows that the performance of artificial neural network is improved with the increase of computational fluid dynamics database. When the number of computational fluid dynamics cases is more than 80, the success rate of artificial neural network increases to more than 40%. Comparing to genetic algorithm and computational fluid dynamics, the proposed hybrid method reduces about 53% of the computational cost. The pseudo solutions are avoided when the self-updating artificial neural network is adopted. In addition, the number of computational fluid dynamics cases is determined automatically, and the requirement of human adjustment is avoided.
The use of genetic algorithm and self-updating artificial neural network for the inverse design of cabin environment
The inverse process of computational fluid dynamics was used to explore the expected indoor environment with the preset objectives. An inverse design method integrating genetic algorithm and self-updating artificial neural network is presented. To reduce the computational cost and eliminate the impact of prediction error of artificial neural network, a self-updating artificial neural network is proposed to realize the self-adaption of computational fluid dynamics database, where all the design objectives of solutions are obtained by computational fluid dynamics instead of artificial neural network. The proposed method was applied to the inverse design of an MD-82 aircraft cabin. The result shows that the performance of artificial neural network is improved with the increase of computational fluid dynamics database. When the number of computational fluid dynamics cases is more than 80, the success rate of artificial neural network increases to more than 40%. Comparing to genetic algorithm and computational fluid dynamics, the proposed hybrid method reduces about 53% of the computational cost. The pseudo solutions are avoided when the self-updating artificial neural network is adopted. In addition, the number of computational fluid dynamics cases is determined automatically, and the requirement of human adjustment is avoided.
The use of genetic algorithm and self-updating artificial neural network for the inverse design of cabin environment
Zhang, Tian-hu (author) / You, Xue-yi (author)
Indoor and Built Environment ; 26 ; 347-354
2017-03-01
8 pages
Article (Journal)
Electronic Resource
English
Taylor & Francis Verlag | 2014
|Genetic Algorithm and Artificial Neural Network
Springer Verlag | 2024
|