A platform for research: civil engineering, architecture and urbanism
Free vibration analysis of a single edge cracked symmetric functionally graded stepped beams
Free vibration analysis of a single edge cracked multi-layered symmetric sandwich stepped Timoshenko beams, made of functionally graded materials, is studied using finite element method and linear elastic fracture mechanic theory. The cantilever functionally graded beam consists of 50 layers, assumed that the second stage of the beam (step part) is created by machining. Thus, providing the material continuity between the two beam stages. It is assumed that material properties vary continuously, along the thickness direction according to the exponential and power laws. A developed MATLAB code is used to find the natural frequencies of three types of the stepped beam, concluding a good agreement with the known data from the literature, supported also by ANSYS software in data verification. In the study, the effects of the crack location, crack depth, power law gradient index, different material distributions, different stepped length, different cross-sectional geometries on natural frequencies and mode shapes are analysed in detail.
Free vibration analysis of a single edge cracked symmetric functionally graded stepped beams
Free vibration analysis of a single edge cracked multi-layered symmetric sandwich stepped Timoshenko beams, made of functionally graded materials, is studied using finite element method and linear elastic fracture mechanic theory. The cantilever functionally graded beam consists of 50 layers, assumed that the second stage of the beam (step part) is created by machining. Thus, providing the material continuity between the two beam stages. It is assumed that material properties vary continuously, along the thickness direction according to the exponential and power laws. A developed MATLAB code is used to find the natural frequencies of three types of the stepped beam, concluding a good agreement with the known data from the literature, supported also by ANSYS software in data verification. In the study, the effects of the crack location, crack depth, power law gradient index, different material distributions, different stepped length, different cross-sectional geometries on natural frequencies and mode shapes are analysed in detail.
Free vibration analysis of a single edge cracked symmetric functionally graded stepped beams
Cunedioglu, Yusuf (author) / Shabani, Shkelzen (author)
Advances in Structural Engineering ; 23 ; 3415-3428
2020-12-01
14 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2018
|Vibrational power flow analysis of cracked functionally graded beams
Elsevier | 2020
|On Post-Buckling Behavior of Edge Cracked Functionally Graded Beams Under Axial Loads
Online Contents | 2015
|Free vibration analysis of exponential functionally graded beams with a single delamination
British Library Online Contents | 2014
|