A platform for research: civil engineering, architecture and urbanism
Lateral load-carrying mechanism of driven battered minipiles
AbstractThe lateral load-carrying mechanism of vertically installed and battered minipiles is evaluated using 1g-physical and numerical modelling. Single minipiles with batter angles of 0°, ± 25° and ± 45° are tested under lateral load in medium dense and dense sand. The minipiles are instrumented with fibre Bragg grated optic fibres to obtain a strain profile (two-dimensional) along the minipile shaft. A calibrated numerical model is further adopted to produce p–y curves for battered minipiles at various node deflections. The ratio of soil reaction of battered minipiles to vertically installed minipiles is observed to change with both deflection and depth of the minipile. An analytical solution is developed based on the decomposition of lateral load into skin friction and passive pressure for battered minipiles. A reduction factor is proposed that considers a decrease in passive pressure when the minipile is loaded in the opposite direction of the batter. The analytical solution is capable of accounting for soil properties, pile rigidity and the angle of inclination of battered minipiles. The analytical method is subsequently verified for cohesive soils using full-scale field results. The ratio of the ultimate lateral load of battered minipiles to vertical minipiles presented in the literature corroborated the findings of this study.
Lateral load-carrying mechanism of driven battered minipiles
AbstractThe lateral load-carrying mechanism of vertically installed and battered minipiles is evaluated using 1g-physical and numerical modelling. Single minipiles with batter angles of 0°, ± 25° and ± 45° are tested under lateral load in medium dense and dense sand. The minipiles are instrumented with fibre Bragg grated optic fibres to obtain a strain profile (two-dimensional) along the minipile shaft. A calibrated numerical model is further adopted to produce p–y curves for battered minipiles at various node deflections. The ratio of soil reaction of battered minipiles to vertically installed minipiles is observed to change with both deflection and depth of the minipile. An analytical solution is developed based on the decomposition of lateral load into skin friction and passive pressure for battered minipiles. A reduction factor is proposed that considers a decrease in passive pressure when the minipile is loaded in the opposite direction of the batter. The analytical solution is capable of accounting for soil properties, pile rigidity and the angle of inclination of battered minipiles. The analytical method is subsequently verified for cohesive soils using full-scale field results. The ratio of the ultimate lateral load of battered minipiles to vertical minipiles presented in the literature corroborated the findings of this study.
Lateral load-carrying mechanism of driven battered minipiles
Acta Geotech.
Mondal, Sanchari (author) / Disfani, Mahdi M. (author)
Acta Geotechnica ; 19 ; 6407-6425
2024-09-01
Article (Journal)
Electronic Resource
English
Behaviour of bio-inspired grouped battered minipiles under lateral loading in clay
Springer Verlag | 2024
|Interpretation of load tests on minipiles
Online Contents | 2004
|Minipiles rescue processing plant
Online Contents | 1994
Cover story: Minipiles to the rescue
Online Contents | 1996