A platform for research: civil engineering, architecture and urbanism
Numerical Modelling for Twin Horizontal Circle Tunnels Under Static and Dynamic Loads
Abstract According to recent studies and observed failures of underground structures, many researchers have addressed the design and construction of tunnel lining against static/dynamic loads and earthquake vibration to get the safety of these structures. Therefore this paper includes the study of the behavior of tunnel lining due to static and dynamic loads. Inner diameter of tunnel is D m. Concrete lining of thickness 0.3 m. The depth of the tunnel centre line from the ground level is 10 D below the surface of the ground, the twin tunnel centre are 3D. After tunnel model is created in the software MIDAS GTS NX, the model is run to analyze the tunnel stability and deformation in static and dynamic conditions by calculating the value of each mesh node based on 3D finite element method and were undertaken to investigate the seismic tunnel response conditions to compare the results in the displacement, stresses, forces and bending moments acting on the tunnel lining. Due to the application of the static load the stress–strain state around the tunnel periphery is changed, the primary stress state is disrupted and the potential of instability increases, otherwise the result shows that the applied dynamic stress is not negligible for underground structure, but it is less dangerous in comparison with the others.
Numerical Modelling for Twin Horizontal Circle Tunnels Under Static and Dynamic Loads
Abstract According to recent studies and observed failures of underground structures, many researchers have addressed the design and construction of tunnel lining against static/dynamic loads and earthquake vibration to get the safety of these structures. Therefore this paper includes the study of the behavior of tunnel lining due to static and dynamic loads. Inner diameter of tunnel is D m. Concrete lining of thickness 0.3 m. The depth of the tunnel centre line from the ground level is 10 D below the surface of the ground, the twin tunnel centre are 3D. After tunnel model is created in the software MIDAS GTS NX, the model is run to analyze the tunnel stability and deformation in static and dynamic conditions by calculating the value of each mesh node based on 3D finite element method and were undertaken to investigate the seismic tunnel response conditions to compare the results in the displacement, stresses, forces and bending moments acting on the tunnel lining. Due to the application of the static load the stress–strain state around the tunnel periphery is changed, the primary stress state is disrupted and the potential of instability increases, otherwise the result shows that the applied dynamic stress is not negligible for underground structure, but it is less dangerous in comparison with the others.
Numerical Modelling for Twin Horizontal Circle Tunnels Under Static and Dynamic Loads
Mohammed, Jaafar (author) / Hrubesova, Eva (author)
2018-05-13
14 pages
Article/Chapter (Book)
Electronic Resource
English
Horizontal resistance of steel piles under static and dynamic loads
Engineering Index Backfile | 1965
|Analysis of Twin Circular Tunnels Subjected to Impact Loads
Springer Verlag | 2021
|