A platform for research: civil engineering, architecture and urbanism
Sensitivity Data Driven Composite Floor Structural Optimization for Tall Office Buildings
In tall office buildings, steel beam composite floor system is a popular solution for floor systems as it is known for requiring less construction time and having good weight-to-strength ratio. However, despite being a relatively light-weight floor system, steel beams in composite floor systems are still accountable for a large percentage of buildings’ self-weight. Therefore, optimization of this floor system design is still required, especially for tall buildings, and it can be achieved by reducing the weight of steel beam supporting the composite deck. In this paper, optimization methods, Multiple Decomposition Method and Sensitivity Data Driven Algorithm, are employed to design and optimize a large span steel beams supporting deck floor of a tall office building. Based on Multiple Decomposition Method, the composite floor’s beams are divided into three substructure levels. To global structural performance, the 1st level which consists of the entire composite deck floor aims to achieve floor the serviceability performance. Subsequently, the 2nd level involves serviceability requirement of composite beams within the floor. Lastly, the 3rd level consists of structural elements such as the composite deck, steel beams, and shear studs, and the optimization problem is related to sizing the cross-section dimensions of each beam to meet the design requirements from both the 2nd level and 3rd level. In addition, Sensitivity Data Driven Algorithm is also used to further determine design constraint sensitivity coefficients to design variables as guidance to examine optimum beam sizing proportion.
Sensitivity Data Driven Composite Floor Structural Optimization for Tall Office Buildings
In tall office buildings, steel beam composite floor system is a popular solution for floor systems as it is known for requiring less construction time and having good weight-to-strength ratio. However, despite being a relatively light-weight floor system, steel beams in composite floor systems are still accountable for a large percentage of buildings’ self-weight. Therefore, optimization of this floor system design is still required, especially for tall buildings, and it can be achieved by reducing the weight of steel beam supporting the composite deck. In this paper, optimization methods, Multiple Decomposition Method and Sensitivity Data Driven Algorithm, are employed to design and optimize a large span steel beams supporting deck floor of a tall office building. Based on Multiple Decomposition Method, the composite floor’s beams are divided into three substructure levels. To global structural performance, the 1st level which consists of the entire composite deck floor aims to achieve floor the serviceability performance. Subsequently, the 2nd level involves serviceability requirement of composite beams within the floor. Lastly, the 3rd level consists of structural elements such as the composite deck, steel beams, and shear studs, and the optimization problem is related to sizing the cross-section dimensions of each beam to meet the design requirements from both the 2nd level and 3rd level. In addition, Sensitivity Data Driven Algorithm is also used to further determine design constraint sensitivity coefficients to design variables as guidance to examine optimum beam sizing proportion.
Sensitivity Data Driven Composite Floor Structural Optimization for Tall Office Buildings
Lecture Notes in Civil Engineering
Geng, Guoqing (editor) / Qian, Xudong (editor) / Poh, Leong Hien (editor) / Pang, Sze Dai (editor) / Chornay, Morn (author) / Zhao, Xin (author)
2023-03-14
12 pages
Article/Chapter (Book)
Electronic Resource
English
Tall office building , Composite floor steel beam , Sensitivity data driven algorithm , Multiple decomposition method Engineering , Building Construction and Design , Structural Materials , Solid Mechanics , Sustainable Architecture/Green Buildings , Light Construction, Steel Construction, Timber Construction , Offshore Engineering
Structural Response of Tall Buildings to Multiple Floor Fires
Online Contents | 2007
|Light in tall office buildings
Engineering Index Backfile | 1892
Structural Response of Tall Buildings to Multiple Floor Fires
British Library Online Contents | 2007
|Steel chimneys for tall office buildings
Engineering Index Backfile | 1894
Mwzzanine Floor Tuned Tall Buildings in Earthquakes
British Library Conference Proceedings | 1994
|