A platform for research: civil engineering, architecture and urbanism
Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading
Abstract A computational procedure is presented for analyzing behaviour of stresses in circumferential butt welds of carbon steel pipe subject to superimposed mechanical loading. Three-dimensional uncoupled thermo-mechanical finite element (FE) analysis method is developed in order to predict the weld residual stress states in circumferentially butt-welded steel pipe. The FE method is verified through the experimental work. Then, three-dimensional elastic–plastic FE analysis is carried out to investigate the behaviour of stresses in steel pipe circumferential welds undergoing superimposed axial tension loading using the weld residual stresses and plastic strains obtained from the thermo-mechanical FE method. The simulated results show that spatial variations of the weld residual stresses are present along the circumference and a rapid change of the residual stresses exists at the weld start/stop position, therefore three-dimensional FE analysis is essential to accurately simulate the circumferential welding of steel pipe. Moreover, when axial tension loading is applied to the circumferentially welded steel pipe, bending moment is generated at the weld area caused by the circumferential shrinkage of the weld during welding, thus affecting the axial and hoop stress evolutions in the course of mechanical loading.
Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading
Abstract A computational procedure is presented for analyzing behaviour of stresses in circumferential butt welds of carbon steel pipe subject to superimposed mechanical loading. Three-dimensional uncoupled thermo-mechanical finite element (FE) analysis method is developed in order to predict the weld residual stress states in circumferentially butt-welded steel pipe. The FE method is verified through the experimental work. Then, three-dimensional elastic–plastic FE analysis is carried out to investigate the behaviour of stresses in steel pipe circumferential welds undergoing superimposed axial tension loading using the weld residual stresses and plastic strains obtained from the thermo-mechanical FE method. The simulated results show that spatial variations of the weld residual stresses are present along the circumference and a rapid change of the residual stresses exists at the weld start/stop position, therefore three-dimensional FE analysis is essential to accurately simulate the circumferential welding of steel pipe. Moreover, when axial tension loading is applied to the circumferentially welded steel pipe, bending moment is generated at the weld area caused by the circumferential shrinkage of the weld during welding, thus affecting the axial and hoop stress evolutions in the course of mechanical loading.
Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading
Chang, Kyong-Ho (author) / Lee, Chin-Hyung (author)
Materials and Structures ; 42 ; 791-801
2008-08-30
11 pages
Article (Journal)
Electronic Resource
English
Weld residual stresses , Circumferential butt welds , Three-dimensional finite element analysis , Superimposed mechanical loading Engineering , Building Materials , Civil Engineering , Operating Procedures, Materials Treatment , Theoretical and Applied Mechanics , Materials Science, general , Structural Mechanics
British Library Online Contents | 2009
|British Library Online Contents | 2006
|