A platform for research: civil engineering, architecture and urbanism
Kinetics of hydrogen peroxide quenching following UV/H2O2 advanced oxidation by thiosulfate, bisulfite, and chlorine in drinking water treatment
Residual H2O2 from UV/H2O2 treatment can be quenched by thiosulfate, bisulfite, and chlorine, but the kinetics of these reactions have not been reported under the full range of practical conditions. In this study, the rates of H2O2 quenching by these compounds were compared in different water matrices, temperatures, pH, and when using different forms of bisulfite and chlorine. In general, it was confirmed that thiosulfate would be too slow to serve as a quenching agent in most practical scenarios. At pH 7–8.5, chlorine tends to quench H2O2 more than 20 times faster than bisulfite in the various conditions tested. An important observation was that in lightly-buffered water (e.g., alkalinity of 20 mg/L as CaCO3), the form of chlorine can have a large impact on quenching rate, with gaseous chlorine slowing the reaction due to its lowering of the pH, and hypochlorite having the opposite effect. These impacts will become less significant when water buffer capacity (i.e., alkalinity) increases (e.g., to 80 mg/L as CaCO3). In addition, water temperature should be considered as the time required to quench H2O2 by chlorine at 4 °C is up to 3 times longer than at 20 °C.
Kinetics of hydrogen peroxide quenching following UV/H2O2 advanced oxidation by thiosulfate, bisulfite, and chlorine in drinking water treatment
Residual H2O2 from UV/H2O2 treatment can be quenched by thiosulfate, bisulfite, and chlorine, but the kinetics of these reactions have not been reported under the full range of practical conditions. In this study, the rates of H2O2 quenching by these compounds were compared in different water matrices, temperatures, pH, and when using different forms of bisulfite and chlorine. In general, it was confirmed that thiosulfate would be too slow to serve as a quenching agent in most practical scenarios. At pH 7–8.5, chlorine tends to quench H2O2 more than 20 times faster than bisulfite in the various conditions tested. An important observation was that in lightly-buffered water (e.g., alkalinity of 20 mg/L as CaCO3), the form of chlorine can have a large impact on quenching rate, with gaseous chlorine slowing the reaction due to its lowering of the pH, and hypochlorite having the opposite effect. These impacts will become less significant when water buffer capacity (i.e., alkalinity) increases (e.g., to 80 mg/L as CaCO3). In addition, water temperature should be considered as the time required to quench H2O2 by chlorine at 4 °C is up to 3 times longer than at 20 °C.
Kinetics of hydrogen peroxide quenching following UV/H2O2 advanced oxidation by thiosulfate, bisulfite, and chlorine in drinking water treatment
Front. Environ. Sci. Eng.
Chen, Tianyi (author) / Taylor-Edmonds, Lizbeth (author) / Andrews, Susan (author) / Hofmann, Ron (author)
2023-12-01
Article (Journal)
Electronic Resource
English
Hydrogen Peroxide for Municipal Drinking Water Treatment
British Library Conference Proceedings | 1994
|Influence of Drinking Water Treatment on Chlorine Decay Kinetics
British Library Conference Proceedings | 1998
|British Library Online Contents | 2011
|