A platform for research: civil engineering, architecture and urbanism
Interrelationships of Load and Displacement of Barrette Piles for Various Interpretation Criteria Subjected to Uplift Loading
This paper evaluates various interpretation criteria for barrette piles subjected to uplift loading conditions. Eight load test results were gathered and employed for the analysis in order to determine the application of these interpretation criteria to barrette piles. The database was divided into drained and undrained soil conditions. Analysis of each of the interpretation criteria was performed in relation to the displacement ranges of each of the interpreted capacities. It was found out that the interpretation criteria L1 provided the initial linear elastic stage or the serviceability design at mean displacements of 4.1 mm and 7.3 mm, respectively, for drained and undrained soil conditions. On the other hand, the interpretation criteria of DeBeer, van der Veen, Terzaghi and Peck, Davisson, L2, and slope tangent fell on the same ranges of interpreted capacities with mean displacements ranging from 15 to 25 mm for drained and from 21 to 34 mm for undrained soil conditions. Finally, the interpretation criteria of DIN4026, Fuller and Hoy, and Chin all over-estimate the capacity with mean displacement exceeding 40 mm for drained and 53 mm for undrained soil conditions. In addition, the interrelationships of the load and the displacement for each of the interpretation criteria were further analyzed. A normalized load-displacement curve was determined in order to assess the corresponding mean displacements at which each of these interpretation criterion’s loads are mobilizing along the curve. Statistical analysis was also applied to determine the consistency and reliability of each of the interpretation criteria. Normalized load-displacement equations for barrette piles subjected to uplift loading condition were also calculated for both drained and undrained soil conditions to be utilized and recommended for engineering practice and design of barrette piles for uplift loading.
Interrelationships of Load and Displacement of Barrette Piles for Various Interpretation Criteria Subjected to Uplift Loading
This paper evaluates various interpretation criteria for barrette piles subjected to uplift loading conditions. Eight load test results were gathered and employed for the analysis in order to determine the application of these interpretation criteria to barrette piles. The database was divided into drained and undrained soil conditions. Analysis of each of the interpretation criteria was performed in relation to the displacement ranges of each of the interpreted capacities. It was found out that the interpretation criteria L1 provided the initial linear elastic stage or the serviceability design at mean displacements of 4.1 mm and 7.3 mm, respectively, for drained and undrained soil conditions. On the other hand, the interpretation criteria of DeBeer, van der Veen, Terzaghi and Peck, Davisson, L2, and slope tangent fell on the same ranges of interpreted capacities with mean displacements ranging from 15 to 25 mm for drained and from 21 to 34 mm for undrained soil conditions. Finally, the interpretation criteria of DIN4026, Fuller and Hoy, and Chin all over-estimate the capacity with mean displacement exceeding 40 mm for drained and 53 mm for undrained soil conditions. In addition, the interrelationships of the load and the displacement for each of the interpretation criteria were further analyzed. A normalized load-displacement curve was determined in order to assess the corresponding mean displacements at which each of these interpretation criterion’s loads are mobilizing along the curve. Statistical analysis was also applied to determine the consistency and reliability of each of the interpretation criteria. Normalized load-displacement equations for barrette piles subjected to uplift loading condition were also calculated for both drained and undrained soil conditions to be utilized and recommended for engineering practice and design of barrette piles for uplift loading.
Interrelationships of Load and Displacement of Barrette Piles for Various Interpretation Criteria Subjected to Uplift Loading
Lecture Notes in Civil Engineering
Strauss, Eric (editor) / Chen, Yit-Jin (author) / Topacio, Anjerick (author) / Laveti, Suneelkumar (author)
International Conference on Civil Engineering ; 2022 ; Singapore, Singapore
2022-08-09
10 pages
Article/Chapter (Book)
Electronic Resource
English
Evaluation of side and tip resistances for barrette piles using CYCU/Barrette/Side&Tip/64
DOAJ | 2024
|