A platform for research: civil engineering, architecture and urbanism
Experimental Study on Dynamic Water Grouting of Modified Water-Soluble Polyurethane
Abstract In underground project, water inrush disaster often occurs, resulting in a large number of casualties and economic losses. To solve these problems, grouting is one of the main techniques for controlling water inrush. At present, the research results on the treatment of water inrush by grouting are based on anhydrous or hydrostatic grouting. However, the study of dynamic water grouting is relatively few and the grouting materials are a little bit. In this paper, water-soluble polyurethane was selected as grouting material, modified by adding hydroxypropyl methyl cellulose, and the bond strength and microstructure change before and after modification are studied via bond strength experiment and microscopic observation. In addition, the WPU (water-soluble polyurethane) diffusion regularity of dynamic water grouting is studied by indoor flat grouting test. The research also adopts the Bingham fluid model according to the slurry characteristics to derive the grouting diffusion radius. The results show that the compactness of HPMC (hydroxypropyl methyl cellulose)-WPU is improved, the heterogeneity is reduced by 50.4%, and the bonding strength is increased by 153%. Therefore, the anti-scour ability of the HPMC-WPU is enhanced. The deviation of the WPU in the X-axis diffusion radius is 7.7 cm, and the HPMC-WPU is 4.39 cm. What’s more, the formula of grouting diffusion radius is derived. By comparing the formula with experiment results, the deviation is less than 15%, therefore, the formula has the significance of guiding engineering practice.
Experimental Study on Dynamic Water Grouting of Modified Water-Soluble Polyurethane
Abstract In underground project, water inrush disaster often occurs, resulting in a large number of casualties and economic losses. To solve these problems, grouting is one of the main techniques for controlling water inrush. At present, the research results on the treatment of water inrush by grouting are based on anhydrous or hydrostatic grouting. However, the study of dynamic water grouting is relatively few and the grouting materials are a little bit. In this paper, water-soluble polyurethane was selected as grouting material, modified by adding hydroxypropyl methyl cellulose, and the bond strength and microstructure change before and after modification are studied via bond strength experiment and microscopic observation. In addition, the WPU (water-soluble polyurethane) diffusion regularity of dynamic water grouting is studied by indoor flat grouting test. The research also adopts the Bingham fluid model according to the slurry characteristics to derive the grouting diffusion radius. The results show that the compactness of HPMC (hydroxypropyl methyl cellulose)-WPU is improved, the heterogeneity is reduced by 50.4%, and the bonding strength is increased by 153%. Therefore, the anti-scour ability of the HPMC-WPU is enhanced. The deviation of the WPU in the X-axis diffusion radius is 7.7 cm, and the HPMC-WPU is 4.39 cm. What’s more, the formula of grouting diffusion radius is derived. By comparing the formula with experiment results, the deviation is less than 15%, therefore, the formula has the significance of guiding engineering practice.
Experimental Study on Dynamic Water Grouting of Modified Water-Soluble Polyurethane
Liu, Xiaofan (author) / Wang, Junguang (author) / Huang, Kun (author) / Li, Fengyun (author)
KSCE Journal of Civil Engineering ; 23 ; 3897-3906
2019-08-06
10 pages
Article (Journal)
Electronic Resource
English
Experimental Study on Dynamic Water Grouting of Modified Water-Soluble Polyurethane
Online Contents | 2019
|Chemical rock grouting-An experimental study on polyurethane foams
British Library Conference Proceedings | 1999
|