A platform for research: civil engineering, architecture and urbanism
Development of Mobile Application for Assessing Urban Heat Island (UHI) Using Geospatial Techniques a Case Study of Chennai City
Urban Heat Island (UHI) is the phenomenon where urbanization results in an increase in surface temperature among different locations within the city. UHI hotspots not only lead to poor air quality and make people’s health at higher risk, but they also tend to magnify the heat stress and level of thermal discomfort experienced by the people. This study aims to find the UHI spots using thermal remote sensing based on satellites, for the estimation of surface temperature, over a continuous spatial and temporal scale and to develop a mobile application indicating the spatial pattern of UHI and heat stress. Wet Bulb Globe Temperature (WBGT) data collected at various locations across Chennai city was evaluated to obtain the indices reflecting risk levels of heat stress in each area. This was subsequently analyzed in a GIS environment, along with the disaggregated Land Surface Temperature (LST) data, to arrive at valuable information that was used to delineate the hotspots of high heat stress and UHI intensity in the city. Finally, this data was exported to a mobile platform (Android) and an application indicating the spatial pattern of UHI and heat stress was developed, which shows the heat risk zones, mitigation measures, etc. This study confirmed the existence of UHI effect in Chennai city during summer. Temperature difference was found to be even as high as 6–7 °C in many parts of the city. The intensity of UHI was established to be strongly dependent on urban factors such as the density of built-up areas, vegetation cover and presence of water bodies. It was shown that such adverse heat conditions deteriorated the urban environment causing health problems. The results of this study indicate that the highest thermal stress is found in the South-Western and Northern part of the city, which is predominantly crowded, constructed (built-up), industrial and commercial areas.
Development of Mobile Application for Assessing Urban Heat Island (UHI) Using Geospatial Techniques a Case Study of Chennai City
Urban Heat Island (UHI) is the phenomenon where urbanization results in an increase in surface temperature among different locations within the city. UHI hotspots not only lead to poor air quality and make people’s health at higher risk, but they also tend to magnify the heat stress and level of thermal discomfort experienced by the people. This study aims to find the UHI spots using thermal remote sensing based on satellites, for the estimation of surface temperature, over a continuous spatial and temporal scale and to develop a mobile application indicating the spatial pattern of UHI and heat stress. Wet Bulb Globe Temperature (WBGT) data collected at various locations across Chennai city was evaluated to obtain the indices reflecting risk levels of heat stress in each area. This was subsequently analyzed in a GIS environment, along with the disaggregated Land Surface Temperature (LST) data, to arrive at valuable information that was used to delineate the hotspots of high heat stress and UHI intensity in the city. Finally, this data was exported to a mobile platform (Android) and an application indicating the spatial pattern of UHI and heat stress was developed, which shows the heat risk zones, mitigation measures, etc. This study confirmed the existence of UHI effect in Chennai city during summer. Temperature difference was found to be even as high as 6–7 °C in many parts of the city. The intensity of UHI was established to be strongly dependent on urban factors such as the density of built-up areas, vegetation cover and presence of water bodies. It was shown that such adverse heat conditions deteriorated the urban environment causing health problems. The results of this study indicate that the highest thermal stress is found in the South-Western and Northern part of the city, which is predominantly crowded, constructed (built-up), industrial and commercial areas.
Development of Mobile Application for Assessing Urban Heat Island (UHI) Using Geospatial Techniques a Case Study of Chennai City
Lecture Notes in Civil Engineering
Mesapam, Shashi (editor) / Ohri, Anurag (editor) / Sridhar, Venkataramana (editor) / Tripathi, Nitin Kumar (editor) / Jayalakshmi, S. (author)
International Virtual Conference on Developments and Applications of Geomatics ; 2022
2024-02-27
14 pages
Article/Chapter (Book)
Electronic Resource
English
A Study on Urban Heat Island Using Geospatial Techniques
Springer Verlag | 2022
|A Study on Urban Heat Island Using Geospatial Techniques
TIBKAT | 2022
|Traffic Safety Management Along City Corridors - Chennai as a Case Study
British Library Online Contents | 2002
|