A platform for research: civil engineering, architecture and urbanism
Modeling of T/C Complex Stiffness Modulus Test and Non-linearity of Asphalt Concrete Mixes
The work described in this article is part of the French national project ANR MoveDVDC. One of the objectives of this project is to evaluate the influence of aging and damage of asphalt concrete materials on the lifetime of road pavements. In this context, modeling the behavior of aged or not asphalt mixes in fatigue is planned. At the moment, the first researches focused on the development of a phenomenological model reflecting the viscoelastic nature of asphalt mixtures to facilitate numerical modeling of structures. With this objective and relying on experimental T/C complex stiffness modulus test data, a viscoelastic non-linear model with variable parameters, abbreviated “VENoL model”, was developed in frequency domain. It consists of two elements in parallel, which represent the real and imaginary parts of the complex stiffness modulus, such that their respective parameters named \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{E}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\eta }$$\end{document} vary according to temperature, pulsation and amplitude (for non-linearity) of sinusoidal loading. To allow a numerical implementation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{E}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\eta }$$\end{document} follow a Carreau-Yasuda law as a function of the reduced pulsation, associating the effects of temperature and pulsation. In homogeneous conditions, this model can reproduce T/C complex stiffness modulus tests on cylindrical specimens. The future work will consist in evolving this model to use it with Discrete Element Method (DEM) and in time domain.
Modeling of T/C Complex Stiffness Modulus Test and Non-linearity of Asphalt Concrete Mixes
The work described in this article is part of the French national project ANR MoveDVDC. One of the objectives of this project is to evaluate the influence of aging and damage of asphalt concrete materials on the lifetime of road pavements. In this context, modeling the behavior of aged or not asphalt mixes in fatigue is planned. At the moment, the first researches focused on the development of a phenomenological model reflecting the viscoelastic nature of asphalt mixtures to facilitate numerical modeling of structures. With this objective and relying on experimental T/C complex stiffness modulus test data, a viscoelastic non-linear model with variable parameters, abbreviated “VENoL model”, was developed in frequency domain. It consists of two elements in parallel, which represent the real and imaginary parts of the complex stiffness modulus, such that their respective parameters named \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{E}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\eta }$$\end{document} vary according to temperature, pulsation and amplitude (for non-linearity) of sinusoidal loading. To allow a numerical implementation, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{E}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\eta }$$\end{document} follow a Carreau-Yasuda law as a function of the reduced pulsation, associating the effects of temperature and pulsation. In homogeneous conditions, this model can reproduce T/C complex stiffness modulus tests on cylindrical specimens. The future work will consist in evolving this model to use it with Discrete Element Method (DEM) and in time domain.
Modeling of T/C Complex Stiffness Modulus Test and Non-linearity of Asphalt Concrete Mixes
RILEM Bookseries
Di Benedetto, Hervé (editor) / Baaj, Hassan (editor) / Chailleux, Emmanuel (editor) / Tebaldi, Gabriele (editor) / Sauzéat, Cédric (editor) / Mangiafico, Salvatore (editor) / Coulon, Léo (author) / Koval, Georg (author) / Chazallon, Cyrille (author) / Roux, Jean-Noël (author)
RILEM International Symposium on Bituminous Materials ; 2020 ; Lyon, France
Proceedings of the RILEM International Symposium on Bituminous Materials ; Chapter: 171 ; 1343-1350
RILEM Bookseries ; 27
2021-09-26
8 pages
Article/Chapter (Book)
Electronic Resource
English
Interpretation of Complex Modulus Test Results for Asphalt-Aggregate Mixes
British Library Online Contents | 2008
|Elastic Modulus of Polymer Treated Asphalt Concrete Mixes
British Library Online Contents | 1997
|Interpretation of complex modulus test results for asphalt-aggregate mixes
Tema Archive | 2008
|