A platform for research: civil engineering, architecture and urbanism
Template/Al2O3 Ratio in Reaction Gels as a Tool to Control the Crystal Morphology, Crystal Dispersion, and Catalytic Performance in Hydroisomerization of n-Hexadecane over SAPO-11 Molecular Sieves
Catalytic systems based on SAPO-11 molecular sieves are known for their superior selectivity in the hydroisomerization of higher (C16+) n-paraffins. However, further improvement of SAPO-11-based catalysts is impeded by the lack of effective tools for controlling the morphology and size of silicoaluminophosphate crystals. The present study investigates the effects of the DPA/Al2O3 molar ratio in reaction gels on the nature of intermediate phases and on the physicochemical properties of SAPO-11 molecular sieves. SAPO-11 has been found to crystallize through the formation of different phases depending on the DPA/Al2O3 ratio: an AlPO4·2H2O intermediate at DPA/Al2O3 = 1.0, a mixture of AlPO4·2H2O and a layered silicoaluminophosphate at DPA/Al2O3 = 1.4, and a layered silicoaluminophosphate alone at DPA/Al2O3 = 1.8. Proper adjustment of this ratio provides an effective tool to control the crystal morphology, crystal size, and the porous structure characteristics of the SAPO-11 molecular sieves. It has been identified that, at DPA/Al2O3 = 1.0, cubic and lamellar SAPO-11 nanocrystals 200–400 nm in size are formed. These nanocrystals have the following textural properties: SBET = 286 m2/g; Vmicro = 0.06 cm3/g; and Vmeso = 0.21 m3/g. Furthermore, the effects of the morphology and size of SAPO-11 molecular sieve crystals on their catalytic performance in the hydroisomerization of n-hexadecane have been demonstrated. Promising catalytic systems based on SAPO-11 nanocrystals have been proposed for the hydroisomerization of C16+n-paraffins.
Template/Al2O3 Ratio in Reaction Gels as a Tool to Control the Crystal Morphology, Crystal Dispersion, and Catalytic Performance in Hydroisomerization of n-Hexadecane over SAPO-11 Molecular Sieves
Catalytic systems based on SAPO-11 molecular sieves are known for their superior selectivity in the hydroisomerization of higher (C16+) n-paraffins. However, further improvement of SAPO-11-based catalysts is impeded by the lack of effective tools for controlling the morphology and size of silicoaluminophosphate crystals. The present study investigates the effects of the DPA/Al2O3 molar ratio in reaction gels on the nature of intermediate phases and on the physicochemical properties of SAPO-11 molecular sieves. SAPO-11 has been found to crystallize through the formation of different phases depending on the DPA/Al2O3 ratio: an AlPO4·2H2O intermediate at DPA/Al2O3 = 1.0, a mixture of AlPO4·2H2O and a layered silicoaluminophosphate at DPA/Al2O3 = 1.4, and a layered silicoaluminophosphate alone at DPA/Al2O3 = 1.8. Proper adjustment of this ratio provides an effective tool to control the crystal morphology, crystal size, and the porous structure characteristics of the SAPO-11 molecular sieves. It has been identified that, at DPA/Al2O3 = 1.0, cubic and lamellar SAPO-11 nanocrystals 200–400 nm in size are formed. These nanocrystals have the following textural properties: SBET = 286 m2/g; Vmicro = 0.06 cm3/g; and Vmeso = 0.21 m3/g. Furthermore, the effects of the morphology and size of SAPO-11 molecular sieve crystals on their catalytic performance in the hydroisomerization of n-hexadecane have been demonstrated. Promising catalytic systems based on SAPO-11 nanocrystals have been proposed for the hydroisomerization of C16+n-paraffins.
Template/Al2O3 Ratio in Reaction Gels as a Tool to Control the Crystal Morphology, Crystal Dispersion, and Catalytic Performance in Hydroisomerization of n-Hexadecane over SAPO-11 Molecular Sieves
Pet. Chem.
Serebrennikov, D. V. (author) / Zabirov, A. R. (author) / Kuvatova, R. Z. (author) / Bagdanova, D. O. (author) / Malunov, A. I. (author) / Dement’ev, K. I. (author) / Agliullin, M. R. (author)
Petroleum Chemistry ; 64 ; 1276-1285
2024-12-01
10 pages
Article (Journal)
Electronic Resource
English