A platform for research: civil engineering, architecture and urbanism
Modeling of the Drivers’ Decision-Making Behavior During Yellow Phase
Abstract Stop and go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Drivers are often caught up in the dilemma zone and unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. These variables include distance-to-stop line, time-to-stop line, approach speed, acceleration/deceleration and category of the vehicle. Further, using external validation, the overall accuracy levels of the drivers’ decision models based on Logistic regression (81.5 percent), Fuzzy Logic (86.98 percent) and ANN (88.67 percent) were compared. Further, a hybrid surrogate model, incorporating the ‘Weighted Average’ technique was developed so that the individual disparities were diminished and the overall accuracy for both stopping and crossing vehicles was improved. This Weighted Average Hybrid Model (WAHM), formulated by coupling Fuzzy Logic and ANN, yielded a highly accurate result (96.15 percent) and outperformed both ANN and Fuzzy Logic.
Modeling of the Drivers’ Decision-Making Behavior During Yellow Phase
Abstract Stop and go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Drivers are often caught up in the dilemma zone and unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. These variables include distance-to-stop line, time-to-stop line, approach speed, acceleration/deceleration and category of the vehicle. Further, using external validation, the overall accuracy levels of the drivers’ decision models based on Logistic regression (81.5 percent), Fuzzy Logic (86.98 percent) and ANN (88.67 percent) were compared. Further, a hybrid surrogate model, incorporating the ‘Weighted Average’ technique was developed so that the individual disparities were diminished and the overall accuracy for both stopping and crossing vehicles was improved. This Weighted Average Hybrid Model (WAHM), formulated by coupling Fuzzy Logic and ANN, yielded a highly accurate result (96.15 percent) and outperformed both ANN and Fuzzy Logic.
Modeling of the Drivers’ Decision-Making Behavior During Yellow Phase
Biswas, Sabyasachi (author) / Ghosh, Indrajit (author)
KSCE Journal of Civil Engineering ; 22 ; 4602-4614
2018-07-07
13 pages
Article (Journal)
Electronic Resource
English
Modeling of the Drivers’ Decision-Making Behavior During Yellow Phase
Online Contents | 2018
|Eye Glance Behavior of Van and Passenger Car Drivers During Lane Change Decision Phase
British Library Online Contents | 2005
|Behavior of drivers during tunnel evacuation
British Library Conference Proceedings | 2003
|Drivers’ Behavior and Traffic Accident Analysis Using Decision Tree Method
DOAJ | 2022
|Collaborative Modeling for Decision Making
British Library Conference Proceedings | 2008
|