A platform for research: civil engineering, architecture and urbanism
Stress Distribution and Failure Characteristics for Workface Floor of a Tilted Coal Seam
Abstract A mechanical model for the tilted workface floor along the tilted direction of coal seam was proposed. Stress expressions of an arbitrary point inside the tilted workface floor were deduced. Calculation formula for the maximum failure depth of the lateral floor strata of the tilted workface was also deduced. Based on the Mohr-Coulomb yield criterion, the tilted workface floor’s stress distribution, and failure depth and shape were simulated by using FLAC3D software for different coal seam’s dip angles, buried depths, and workface widths. Results show that the concentration coefficient, the peak value and the distance between the peak position of the lateral abutment pressure and the roadway on both sides of the tilted workface decreases with the increases in coal seam’s dip angle. The vertical stress isoclines present a “spoon-shaped” distribution along the tilted direction of workface. Both sides of the workface form “bubble-shaped” distribution shear stress and its peak value increases first and then decreases with the increases in coal seam’s dip angle and reaches maximum at 30°–35°. The tilted workface floor’s plastic failure zone presents a “spoon-shaped” distribution along the tilted direction of workface, which is large on the lower side and small on the upper side. The plastic zone’s failure depth increases first and then decreases with the increases in the dip angle of coal seam and reaches maximum at 30°.
Stress Distribution and Failure Characteristics for Workface Floor of a Tilted Coal Seam
Abstract A mechanical model for the tilted workface floor along the tilted direction of coal seam was proposed. Stress expressions of an arbitrary point inside the tilted workface floor were deduced. Calculation formula for the maximum failure depth of the lateral floor strata of the tilted workface was also deduced. Based on the Mohr-Coulomb yield criterion, the tilted workface floor’s stress distribution, and failure depth and shape were simulated by using FLAC3D software for different coal seam’s dip angles, buried depths, and workface widths. Results show that the concentration coefficient, the peak value and the distance between the peak position of the lateral abutment pressure and the roadway on both sides of the tilted workface decreases with the increases in coal seam’s dip angle. The vertical stress isoclines present a “spoon-shaped” distribution along the tilted direction of workface. Both sides of the workface form “bubble-shaped” distribution shear stress and its peak value increases first and then decreases with the increases in coal seam’s dip angle and reaches maximum at 30°–35°. The tilted workface floor’s plastic failure zone presents a “spoon-shaped” distribution along the tilted direction of workface, which is large on the lower side and small on the upper side. The plastic zone’s failure depth increases first and then decreases with the increases in the dip angle of coal seam and reaches maximum at 30°.
Stress Distribution and Failure Characteristics for Workface Floor of a Tilted Coal Seam
Sun, Jian (author) / Wang, Lianguo (author) / Zhao, Guangming (author)
KSCE Journal of Civil Engineering ; 23 ; 3793-3806
2019-08-06
14 pages
Article (Journal)
Electronic Resource
English
Stress Distribution and Failure Characteristics for Workface Floor of a Tilted Coal Seam
Online Contents | 2019
|A Study on the Roof Fracture Mechanism of Large Cutting Height Workface in Shallow Thick Coal Seam
Trans Tech Publications | 2011
|British Library Conference Proceedings | 2012
|British Library Conference Proceedings | 2012
|