A platform for research: civil engineering, architecture and urbanism
Appraising stone column settlement prediction methods using finite element analyses
Abstract Numerous approaches exist for the prediction of the settlement improvement offered by the vibro-replacement technique in weak or marginal soil deposits. The majority of the settlement prediction methods are based on the unit cell assumption, with a small number based on plane strain or homogenisation techniques. In this paper, a comprehensive review and assessment of the more popular settlement prediction methods is carried out with a view to establishing which method(s) is/are in best agreement with finite element predictions from a series of PLAXIS 2D axisymmetric analyses on an end-bearing column. The Hardening Soil Model in PLAXIS 2D has been used to model the behaviour of both the granular column material and the treated soft clay soil. This study has shown that purely elastic settlement prediction methods overestimate the settlement improvement for large modular ratios, while the methods based on elastic–plastic theory are in better agreement with finite element predictions at higher modular ratios. In addition, a parameter sensitivity study has been carried out to establish the influence of a range of different design parameters on predictions obtained using a selection of elastic–plastic methods.
Appraising stone column settlement prediction methods using finite element analyses
Abstract Numerous approaches exist for the prediction of the settlement improvement offered by the vibro-replacement technique in weak or marginal soil deposits. The majority of the settlement prediction methods are based on the unit cell assumption, with a small number based on plane strain or homogenisation techniques. In this paper, a comprehensive review and assessment of the more popular settlement prediction methods is carried out with a view to establishing which method(s) is/are in best agreement with finite element predictions from a series of PLAXIS 2D axisymmetric analyses on an end-bearing column. The Hardening Soil Model in PLAXIS 2D has been used to model the behaviour of both the granular column material and the treated soft clay soil. This study has shown that purely elastic settlement prediction methods overestimate the settlement improvement for large modular ratios, while the methods based on elastic–plastic theory are in better agreement with finite element predictions at higher modular ratios. In addition, a parameter sensitivity study has been carried out to establish the influence of a range of different design parameters on predictions obtained using a selection of elastic–plastic methods.
Appraising stone column settlement prediction methods using finite element analyses
Sexton, Brian G. (author) / McCabe, Bryan A. (author) / Castro, Jorge (author)
Acta Geotechnica ; 9 ; 993-1011
2013-09-26
19 pages
Article (Journal)
Electronic Resource
English
Analytical design methods , Finite element analyses , Stone columns , Settlement improvement factor Engineering , Geoengineering, Foundations, Hydraulics , Continuum Mechanics and Mechanics of Materials , Geotechnical Engineering & Applied Earth Sciences , Soil Science & Conservation , Soft and Granular Matter, Complex Fluids and Microfluidics , Structural Mechanics
Appraising stone column settlement prediction methods using finite element analyses
British Library Online Contents | 2014
|Appraising stone column settlement prediction methods using finite element analyses
Online Contents | 2013
|The settlement performance of stone column foundations
Online Contents | 2011
|The settlement performance of stone column foundations
British Library Online Contents | 2011
|