A platform for research: civil engineering, architecture and urbanism
CFD modeling of orthogonal wave-current interactions in a rectangular numerical wave basin
Sea-crossing bridges are subject to long-term simultaneous wave and current loadings throughout thier life cycle. The wave-current interaction makes the hydrodynamic load calculation difficult and challenging, especially in simulating the noncollinear wave-current interactions between waves and currents due to potential disturbances such as wall reflections within the observational zone. Therefore, in this study, a numerical flume was built based on the Reynolds time-average (RANS) equation and k-ε turbulence model using the computational fluid dynamics (CFD) software Flow-3D to investigate noncollinear wave-current interaction numerical simulation methods. The collinear wave-current interactions were then numerically simulated using the inflow boundary and mass source wave generation method, and the developed numerical flume was validated with experimental results based on a large-scale wave-current flume. Furthermore, a three-dimensional numerical simulation of complex noncollinear wave-current interactions was developed. The developed rectangular numerical basin based on the collinear wave-current flume was validated with theoretical results regarding wavelength variations in a noncollinear wave-current interaction field. Finally, the effective observation zone of orthogonal wave-current interactions was explored. This study is important for advancing bridge hydrodynamic research into noncollinear wave-current interactions.
CFD modeling of orthogonal wave-current interactions in a rectangular numerical wave basin
Sea-crossing bridges are subject to long-term simultaneous wave and current loadings throughout thier life cycle. The wave-current interaction makes the hydrodynamic load calculation difficult and challenging, especially in simulating the noncollinear wave-current interactions between waves and currents due to potential disturbances such as wall reflections within the observational zone. Therefore, in this study, a numerical flume was built based on the Reynolds time-average (RANS) equation and k-ε turbulence model using the computational fluid dynamics (CFD) software Flow-3D to investigate noncollinear wave-current interaction numerical simulation methods. The collinear wave-current interactions were then numerically simulated using the inflow boundary and mass source wave generation method, and the developed numerical flume was validated with experimental results based on a large-scale wave-current flume. Furthermore, a three-dimensional numerical simulation of complex noncollinear wave-current interactions was developed. The developed rectangular numerical basin based on the collinear wave-current flume was validated with theoretical results regarding wavelength variations in a noncollinear wave-current interaction field. Finally, the effective observation zone of orthogonal wave-current interactions was explored. This study is important for advancing bridge hydrodynamic research into noncollinear wave-current interactions.
CFD modeling of orthogonal wave-current interactions in a rectangular numerical wave basin
ABEN
2024-07-02
Article (Journal)
Electronic Resource
English
A SPH numerical wave basin for modeling wave-structure interactions
Online Contents | 2016
|Numerical Wave Flume and Numerical Wave Basin
Springer Verlag | 2020
|Numerical simulations of wave–current flow in an ocean basin
Online Contents | 2016
|3D Wave-Current Interactions in Wave-Current Channels
British Library Conference Proceedings | 1999
|Multidirectional random wave interactions with rectangular submarine pits
Springer Verlag | 2003
|