A platform for research: civil engineering, architecture and urbanism
Detection of Earthquake-Induced Damage in Building Structures Using Earthquake Response Data
Under strong ground shaking, buildings may suffer damages leading to strength and/or stiffness degradation. The estimates of such damages may be obtained by identifying parameters, defining a nonlinear model of the building behavior, from the measured building vibration responses under seismic excitation. There are several techniques, like nonlinear system identification and finite element model updating, which may be used in detecting such damages. However, these methods are typically computationally expensive, and often have associated convergence issues. In this work, a fast damage detection technique is developed for detecting damages in buildings under seismic excitations. The method uses the vibration responses of the building recorded during the seismic event, along with the measured ground motion. This measured data is used to estimate the Park and Ang damage index, representative of the level of damage in the building. The ductility demand and hysteretic energy dissipation, necessary in defining this index, are directly estimated from the measured data, bypassing the need of structural parameter identification, making the damage detection computationally faster. The method is illustrated using experimental data from a laboratory scale four story reinforced concrete frame, progressively damaged through shake table tests, with the inter-story hysteretic behavior modeled using the Bouc-Wen model.
Detection of Earthquake-Induced Damage in Building Structures Using Earthquake Response Data
Under strong ground shaking, buildings may suffer damages leading to strength and/or stiffness degradation. The estimates of such damages may be obtained by identifying parameters, defining a nonlinear model of the building behavior, from the measured building vibration responses under seismic excitation. There are several techniques, like nonlinear system identification and finite element model updating, which may be used in detecting such damages. However, these methods are typically computationally expensive, and often have associated convergence issues. In this work, a fast damage detection technique is developed for detecting damages in buildings under seismic excitations. The method uses the vibration responses of the building recorded during the seismic event, along with the measured ground motion. This measured data is used to estimate the Park and Ang damage index, representative of the level of damage in the building. The ductility demand and hysteretic energy dissipation, necessary in defining this index, are directly estimated from the measured data, bypassing the need of structural parameter identification, making the damage detection computationally faster. The method is illustrated using experimental data from a laboratory scale four story reinforced concrete frame, progressively damaged through shake table tests, with the inter-story hysteretic behavior modeled using the Bouc-Wen model.
Detection of Earthquake-Induced Damage in Building Structures Using Earthquake Response Data
Lecture Notes in Civil Engineering
Rizzo, Piervincenzo (editor) / Milazzo, Alberto (editor) / Kumar, Punit (author) / Gautam, Ankur (author) / Mukhopadhyay, Suparno (author)
European Workshop on Structural Health Monitoring ; 2020
2021-01-11
8 pages
Article/Chapter (Book)
Electronic Resource
English
Earthquake Damage Detection of a Thirteen Story Building Using Recorded Response
British Library Conference Proceedings | 2002
|Earthquake Induced Damage Mechanism of Long Period Structures Using Energy Response
British Library Conference Proceedings | 2008
|