A platform for research: civil engineering, architecture and urbanism
Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil
Enzyme-induced carbonate precipitation (EICP) is a novel, bioinspired soil stabilization technique in which calcium carbonate (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCO}}_{3}$$\end{document}) crystals are enzymatically precipitated to cement and link the soil grains, thereby improving the shear strength of the soil. This work aims to analyze the effect of incorporating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{{2+}}$$\end{document} ions on crystal morphology and their direct influence on the mechanical properties of the soil. A beaker experiment conducted by mixing urea, urease enzyme and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MgCl}}_{2}$$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCl}}_{2}$$\end{document} in different molar ratios revealed that the increase in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\text{Mg}}^{{2+}}} \mathord{\left/{\vphantom {{{\text{Mg}}^{{2+}}} {{\text{Ca}}^{{2+}}}}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}$$\end{document} molar ratio decreases the amount of precipitated mass. The soil specimens for unconfined compressive strength (UCS) test were prepared as per its maximum dry unit weight (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_{\text{dmax}}$$\end{document}), and an optimum solution content (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{w}}_{\text{opt}}$$\end{document}) consisting of urea, urease enzyme and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MgCl}}_{2}$$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCl}}_{2}$$\end{document} at various \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\text{Mg}}^{{2+}} }\mathord{\left/{\vphantom {{{\text{Mg}}^{2+}} {{\text{Ca}}^{2 + } }}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}$$\end{document} molar ratio. Field-emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD) tests performed on precipitated mass verify the influence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{{2+}}$$\end{document} ions on crystal morphology and the occurrence of other carbonates (dolomite) and polymorphs of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCO}}_{3}$$\end{document}. The results of the UCS tests show that the lower molar ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{{2+}}$$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}^{2 + }$$\end{document} can significantly improve the undrained shear strength of the soil.
Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil
Enzyme-induced carbonate precipitation (EICP) is a novel, bioinspired soil stabilization technique in which calcium carbonate (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCO}}_{3}$$\end{document}) crystals are enzymatically precipitated to cement and link the soil grains, thereby improving the shear strength of the soil. This work aims to analyze the effect of incorporating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{{2+}}$$\end{document} ions on crystal morphology and their direct influence on the mechanical properties of the soil. A beaker experiment conducted by mixing urea, urease enzyme and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MgCl}}_{2}$$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCl}}_{2}$$\end{document} in different molar ratios revealed that the increase in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\text{Mg}}^{{2+}}} \mathord{\left/{\vphantom {{{\text{Mg}}^{{2+}}} {{\text{Ca}}^{{2+}}}}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}$$\end{document} molar ratio decreases the amount of precipitated mass. The soil specimens for unconfined compressive strength (UCS) test were prepared as per its maximum dry unit weight (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma_{\text{dmax}}$$\end{document}), and an optimum solution content (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{w}}_{\text{opt}}$$\end{document}) consisting of urea, urease enzyme and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{MgCl}}_{2}$$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCl}}_{2}$$\end{document} at various \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\text{Mg}}^{{2+}} }\mathord{\left/{\vphantom {{{\text{Mg}}^{2+}} {{\text{Ca}}^{2 + } }}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}$$\end{document} molar ratio. Field-emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD) tests performed on precipitated mass verify the influence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{{2+}}$$\end{document} ions on crystal morphology and the occurrence of other carbonates (dolomite) and polymorphs of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{CaCO}}_{3}$$\end{document}. The results of the UCS tests show that the lower molar ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Mg}}^{{2+}}$$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ca}}^{2 + }$$\end{document} can significantly improve the undrained shear strength of the soil.
Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil
Lecture Notes in Civil Engineering
Prashant, Amit (editor) / Sachan, Ajanta (editor) / Desai, Chandrakant S. (editor) / Chandra, Alok (author) / Ravi, K. (author)
2020-03-12
14 pages
Article/Chapter (Book)
Electronic Resource
English
Using Enzyme-Induced Calcite Precipitation (EICP) to Improve Strength of Sandy Soils
Springer Verlag | 2024
|